首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Following Smolin, we proceed to unification of general relativity and quantum theory by operating solely with events, i.e., without appealing to physical systems and space-time. The universe is modelled as a dendrogram (finite tree) expressing the hierarchic relations between events. This is the observational (epistemic) model; the ontic model is based on p-adic numbers (infinite trees). Hence, we use novel mathematics: not only space-time but even real numbers are not in use. Here, the p-adic space (which is zero-dimensional) serves as the base for the holographic image of the universe. In this way our theory is connected with p-adic physics; in particular, p-adic string theory and complex disordered systems (p-adic representation of the Parisi matrix for spin glasses). Our Dendrogramic-Holographic (DH) theory matches perfectly with the Mach’s principle and Brans–Dicke theory. We found a surprising informational interrelation between the fundamental constants, h, c, G, and their DH analogues, h(D), c(D), G(D). DH theory is part of Wheeler’s project on the information restructuring of physics. It is also a step towards the Unified Field theory. The universal potential V is nonlocal, but this is relational DH nonlocality. V can be coupled to the Bohm quantum potential by moving to the real representation. This coupling enhances the role of the Bohm potential.  相似文献   

2.
In this paper we unravel the connection between the quantum mechanical formalism and the Central limit theorem (CLT). We proceed to connect the results coming from this theorem with the derivations of the Schrödinger equation from the Liouville equation, presented by ourselves in other papers. In those papers we had used the concept of an infinitesimal parameter x that raised some controversy. The status of this infinitesimal parameter is then elucidated in the framework of the CLT. Finally, we use the formal apparatus developed in our previous papers and the results of the present one to advance an alternative objective interpretation of quantum mechanics in which its relations with the classical framework are made explicit. The relations between our approach and those using the Wigner–Moyal transformation are also addressed.  相似文献   

3.
Core quantum postulates including the superposition principle and the unitarity of evolutions are natural and strikingly simple. I show that—when supplemented with a limited version of predictability (captured in the textbook accounts by the repeatability postulate)—these core postulates can account for all the symptoms of classicality. In particular, both objective classical reality and elusive information about reality arise, via quantum Darwinism, from the quantum substrate. This approach shares with the Relative State Interpretation of Everett the view that collapse of the wavepacket reflects perception of the state of the rest of the Universe relative to the state of observer’s records. However, our “let quantum be quantum” approach poses questions absent in Bohr’s Copenhagen Interpretation that relied on the preexisting classical domain. Thus, one is now forced to seek preferred, predictable, hence effectively classical but ultimately quantum states that allow observers keep reliable records. Without such (i) preferred basis relative states are simply “too relative”, and the ensuing basis ambiguity makes it difficult to identify events (e.g., measurement outcomes). Moreover, universal validity of quantum theory raises the issue of (ii) the origin of Born’s rule, pk=|ψk|2, relating probabilities and amplitudes (that is simply postulated in textbooks). Last not least, even preferred pointer states (defined by einselectionenvironment—induced superselection)—are still quantum. Therefore, unlike classical states that exist objectively, quantum states of an individual system cannot be found out by an initially ignorant observer through direct measurement without being disrupted. So, to complete the ‘quantum theory of the classical’ one must identify (iii) quantum origin of objective existence and explain how the information about objectively existing states can appear to be essentially inconsequential for them (as it does for states in Newtonian physics) and yet matter in other settings (e.g., thermodynamics). I show how the mathematical structure of quantum theory supplemented by the only uncontroversial measurement postulate (that demands immediate repeatability—hence, predictability) leads to preferred states. These (i) pointer states correspond to measurement outcomes. Their stability is a prerequisite for objective existence of effectively classical states and for events such as quantum jumps. Events at hand, one can now enquire about their probability—the probability of a pointer state (or of a measurement record). I show that the symmetry of entangled states—(ii) entanglement—assisted invariance or envariance—implies Born’s rule. Envariance also accounts for the loss of phase coherence between pointer states. Thus, decoherence can be traced to symmetries of entanglement and understood without its usual tool—reduced density matrices. A simple and manifestly noncircular derivation of pk=|ψk|2 follows. Monitoring of the system by its environment in course of decoherence typically leaves behind multiple copies of its pointer states in the environment. Only pointer states can survive decoherence and can spawn such plentiful information-theoretic progeny. This (iii) quantum Darwinism allows observers to use environment as a witness—to find out pointer states indirectly, leaving systems of interest untouched. Quantum Darwinism shows how epistemic and ontic (coexisting in epiontic quantum state) separate into robust objective existence of pointer states and detached information about them, giving rise to extantons—composite objects with system of interest in the core and multiple records of its pointer states in the halo comprising of environment subsystems (e.g., photons) which disseminates that information throughout the Universe.  相似文献   

4.
No Heading The Evans field equation is solved to give the equations governing the evolution of scalar curvature R and contracted energy-momentum T. These equations show that R and T are always analytical, oscillatory, functions without singularity and apply to all radiated and matter fields from the sub-atomic to the cosmological level. One of the implications is that all radiated and matter fields are both causal and quantized, contrary to the Heisenberg uncertainty principle. The wave equations governing this quantization are deduced from the Evans field equation. Another is that the universe is oscillatory without singularity, contrary to contemporary opinion based on singularity theorems. The Evans field equation is more fundamental than, and leads to, the Einstein field equation as a particular example, and so modifies and generalizes the contemporary Big Bang model. The general force and conservation equations of radiated and matter fields are deduced systematically from the Evans field equation. These include the field equations of electrodynamics, dark matter, and the unified or hybrid field.  相似文献   

5.
We develop a prequantum classical statistical model in that the role of hidden variables is played by classical (vector) fields. We call this model Prequantum Classical Statistical Field Theory (PCSFT). The correspondence between classical and quantum quantities is asymptotic, so we call our approach asymptotic dequantization. We construct the complex representation of PCSFT. In particular, the conventional Schrödinger equation is obtained as the complex representation of the system of Hamilton equations on the infinite-dimensional phase space. In this note we pay the main attention to interpretation of so called pure quantum states (wave functions) in PCSFT, especially stationary states. We show, see Theorem 2, that pure states of QM can be considered as labels for Gaussian measures concentrated on one dimensional complex subspaces of phase space that are invariant with respect to the Schrödinger dynamics. “A quantum system in a stationary state ψ” in PCSFT is nothing else than a Gaussian ensemble of classical fields (fluctuations of the vacuum field of a very small magnitude) which is not changed in the process of Schrödinger's evolution. We interpret in this way the problem of stability of hydrogen atom. One of unexpected consequences of PCSFT is the infinite dimension of physical space on the prequantum scale.  相似文献   

6.
There are many theories of quantum gravity, depending on asymptotic boundary conditions, and the amount of supersymmetry. The cosmological constant is one of the fundamental parameters that characterizes different theories. If it is positive, supersymmetry must be broken. A heuristic calculation shows that a cosmological constant of the observed size predicts superpartners in the TeV range. This mechanism for SUSY breaking also puts important constraints on low energy particle physics models.  相似文献   

7.
Q. Duret 《Annals of Physics》2010,325(10):2041-2074
Starting from Wigner’s symmetry representation theorem, we give a general account of discrete symmetries (parity P, charge conjugation C, time-reversal T), focusing on fermions in Quantum Field Theory. We provide the rules of transformation of Weyl spinors, both at the classical level (grassmanian wave functions) and quantum level (operators). Making use of Wightman’s definition of invariance, we outline ambiguities linked to the notion of classical fermionic Lagrangian. We then present the general constraints cast by these transformations and their products on the propagator of the simplest among coupled fermionic system, the one made with one fermion and its antifermion. Last, we put in correspondence the propagation of C eigenstates (Majorana fermions) and the criteria cast on their propagator by C and CP invariance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号