首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal reduction of N2O by CO mediated by the metal‐free cluster cations [Si2Ox].+ (x =2–5) has been examined in the gas phase using Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry in conjunction with quantum chemical calculations. Three successive oxidation/reduction steps occur starting from [Si2O2].+ and N2O to form eventually [Si2O5].+; the latter as well as the intermediate oxide cluster ions react sequentially with CO molecules to regenerate [Si2O2].+. Thus, full catalytic cycles occur at ambient conditions in the gas phase. Mechanistic aspects of these sequential redox processes have been addressed to reveal the electronic origins of these unparalleled reactions.  相似文献   

2.
We report the observation of chemical reactions in gas‐phase Rhn(N2O)m+ complexes driven by absorption of blackbody radiation. The experiments are performed under collision‐free conditions in a Fourier transform ion cyclotron resonance mass spectrometer. Mid‐infrared absorption by the molecularly adsorbed N2O moieties promotes a small fraction of the cluster distribution sufficiently to drive the N2O decomposition reaction, leading to the production of cluster oxides and the release of molecular nitrogen. N2O decomposition competes with molecular desorption and the branching ratios for the two processes show marked size effects, reflecting variations in the relative barriers. The rate of decay is shown to scale approximately linearly with the number of infrared chromophores. The experimental findings are interpreted in terms of calculated infrared absorption rates assuming a sudden‐death limit.  相似文献   

3.
 In this study, the electrochemical properties of novel porphyrazines with eight crown ether substituents appending on the periphery through flexible chains were investigated by using cyclic voltammetry and controlled potential coulometry. Cyclic voltammetry measurements showed that the metal free porphyrazine gave all of the six possible redox reactions of common porphyrazine derivatives. Cobalt porphyrazine exhibited a metal-based reduction and a metal-based oxidation processes followed by two ligand-based reduction and two oxidation processes. I p vs. ν1/2 plots of redox processes of the two compounds indicated the diffusional mass transfer mechanism of the complexes. Copper porphyrazine gave an oxidation process having adsorption properties and three reduction reactions. The variations of peak current ratios of electrochemical reactions for all three complexes with scan rate showed that electron transfer processes of complexes were followed by reversible or irreversible chemical reactions. Aggregation and sandwich adduct formation properties of complexes were determined by CV measurements. Peak potentials of redox processes for all complexes were shifted towards positive potentials by addition of alkali metal cations. Addition of K+ formed sandwich type adducts with 15-crown-macrocycles diminishing aggregation of planar molecules by intramolecular rather than intermolecular complexation.  相似文献   

4.
A series of new hexacoordinated {RuII(NNNN,P)} complexes was prepared from [RuCl2(R3P)3]. Their structure was determined by X‐ray crystallography. The catalytic potential of this new class of complexes was tested in the alkylation of aniline with benzyl alcohol. In this test reaction, the influence of the counteranion plus electronic influences at the tetradentate ligand and the phosphine ligand were examined. The electrochemistry of all complexes was studied by cyclic voltammetry. Depending on the substituent at the ligand backbone, the complexes showed a different behavior. For all N‐benzyl substituted complexes, reversible RuII/III redox potentials were observed, whereas the N‐methyl substituted complex possessed an irreversible oxidation event at small scan rates. Furthermore, the electronic influence of different substituents at the ligand scaffold and at the phosphine on the RuII/III redox potential was investigated. The measured E0 values were correlated to the theoretically determined HOMO energies of the complexes. In addition, these HOMO energies correlated well with the reactivity of the single complexes in the alkylation of aniline with benzyl alcohol. The exact balance of redox potential and reactivity appears to be crucial for synchronizing the multiple hydrogen‐transfer events. The optimized catalyst structure was applied in a screening on scope and limitation in the catalytic dehydrative alkylation of anilines by using alcohols.  相似文献   

5.
Results are presented for two experiments on N2O2+ cluster ions formed via the reactions O2+ + N2 + M → (N2) (O2+) + M (i), and NO+ + NO + M → (NO)2+ + M (ii). In the first experiment the N2O2+ clusters are collisionally dissociated. The resulting collision-induced dissociation (CID) spectra show almost exclusively O2+ and N2+ products from N2 O2+ formed via the first reaction, and almost exclusively NO+ products from N2O2+ formed via the second reaction. In the second experiment, single-photon photodissociation of N2O2+ ions produced by both reactions (i) and (ii) was investigate using 514.5 and 634 nm radiation. The results indicate that the N2O2+ cluster from reaction (i) cannot be photodissociated while the N2O2+ cluster from reaction (ii) undergoes photodissociation at both wavelengths. These experiments indicate that two distinct N2O2+ cluster ions exist and that reactions (i) and (ii) selectively produce the two ions.  相似文献   

6.
Summary.  In this study, the electrochemical properties of novel porphyrazines with eight crown ether substituents appending on the periphery through flexible chains were investigated by using cyclic voltammetry and controlled potential coulometry. Cyclic voltammetry measurements showed that the metal free porphyrazine gave all of the six possible redox reactions of common porphyrazine derivatives. Cobalt porphyrazine exhibited a metal-based reduction and a metal-based oxidation processes followed by two ligand-based reduction and two oxidation processes. I p vs. ν1/2 plots of redox processes of the two compounds indicated the diffusional mass transfer mechanism of the complexes. Copper porphyrazine gave an oxidation process having adsorption properties and three reduction reactions. The variations of peak current ratios of electrochemical reactions for all three complexes with scan rate showed that electron transfer processes of complexes were followed by reversible or irreversible chemical reactions. Aggregation and sandwich adduct formation properties of complexes were determined by CV measurements. Peak potentials of redox processes for all complexes were shifted towards positive potentials by addition of alkali metal cations. Addition of K+ formed sandwich type adducts with 15-crown-macrocycles diminishing aggregation of planar molecules by intramolecular rather than intermolecular complexation. Corresponding author. E-mail: ahmetg@itu.edu.tr Received May 23, 2002; accepted (revised) May 31, 2002  相似文献   

7.
Cobalt bis-(N-arylimino)isoindolinates undergo electrostatic interactions with DNA or react with alkyl hydroperoxides to form ketones and alcohols. Redox behavior of the metal center should affect such reactivities; therefore, six neutral CoII(L)2 complexes with L = bis-(N-arylimino)isoindolinates have been synthesized to elucidate the effect of the aryl substituents on the redox potential of the metal center. Redox properties of various MII(L)2 complexes (M = Mn, Fe, Co, Ni) are compared. Moreover, data are presented on the dismutation rates of superoxide radical anion (a knowingly sensitive reagent on the redox properties of the metal center) in the presence of the various CoII(L)2 complexes among identical conditions.  相似文献   

8.
A series of Cu+ complexes with ligands that feature varying numbers of benzimidazole/thioether donors and methylene or ethylene linkers between the central nitrogen atom and the thioether sulfur atoms have been spectroscopically and electrochemically characterized. Cyclic voltammetry measurements indicated that the highest Cu2+/Cu+ redox potentials correspond to sulfur‐rich coordination environments, with values decreasing as the thioether donors are replaced by nitrogen‐donating benzimidazoles. Both Cu2+ and Cu+ complexes were studied by DFT. Their electronic properties were determined by analyzing their frontier orbitals, relative energies, and the contributions to the orbitals involved in redox processes, which revealed that the HOMOs of the more sulfur‐rich copper complexes, particularly those with methylene linkers (? N? CH2? S? ), show significant aromatic thioether character. Thus, the theoretically predicted initial oxidation at the sulfur atom of the methylene‐bridged ligands agrees with the experimentally determined oxidation waves in the voltammograms of the NS3‐ and N2S2‐type ligands as being ligand‐based, as opposed to the copper‐based processes of the ethylene‐bridged Cu+ complexes. The electrochemical and theoretical results are consistent with our previously reported mechanistic proposal for Cu2+‐promoted oxidative C? S bond cleavage, which in this work resulted in the isolation and complete characterization (including by X‐ray crystallography) of the decomposition products of two ligands employed, further supporting the novel reactivity pathway invoked. The combined results raise the possibility that the reactions of copper–thioether complexes in chemical and biochemical systems occur with redox participation of the sulfur atom.  相似文献   

9.
Metal complexes produced by depositing size selected Fe and Ag cluster cations in N2 and O2 matrices respectively are studied by infrared spectroscopy. Unknown species such as Fe(N2)x, Fe3 (N2)x and Ag3(O2)x are observed. The IR spectra of Ag+, Ag 2 + and Ag 9 + in excess O2 indicate that no complexes involving molecular oxygen are formed. However, the strong silver cluster UV-visible absorptions detected in Ar matrices disappear in the oxygen matrices, suggesting that silver-oxygen complexes are formed with dissociated oxygen.  相似文献   

10.
The first synthetic manganese tetrazene complexes are described as a redox pair comprising anionic [Mn(N4Ad2)2]? ( 1 ) and neutral Mn(N4Ad2)2 ( 2 ) complexes (N4Ad2=[Ad‐N?N=N?N‐Ad]2?). Compound 1 is obtained in two forms as lithium salts, one as a cationic Li2Mn cluster, and one as a Mn–Li 1D ionic polymer. Compound 1 is electronically described as a MnIII center with two [N4Ad2]2? ligands. The one‐electron oxidized 2 is crystalized in two morphologies, one as pure 2 and one as an acetonitrile adduct. Despite similar composition, the behavior of 2 differs in the two morphologies. Compound 2 ‐ MeCN is relatively air and temperature stable. Crystalline 2 , on the other hand, exhibits a compositional, dynamic disorder wherein the tetrazene metallacycle ring‐opens into a metal imide/azide complex detectable by X‐ray crystallography and FTIR spectroscopy. Electronic structure of 2 was examined by EPR and XPS spectroscopies and DFT calculations, which indicate 2 is best described as a MnIII ion with an anion radical delocalized across the two ligands through spin‐polarization effects.  相似文献   

11.
The effects of adding molecules on the LIF at 540 nm of a barium atom at the surface of an argon cluster (average size 420) has been investigated. We showed that molecules like ethanol,n-hexane and O2 from stable complexes with ground state barium. In the case of molecules like N2, CH4 and SF6, the collisional quenching of solvated Ba(1 P) is observed. The large quenching rates obtained are interpreted by a surface mobility of the collisional partners. Moreover, we showed that this collisional quenching leads to the ejection of free Ba(3 P 1).  相似文献   

12.
《Chemical physics》1987,111(2):327-338
Ion-molecule reactions of C+2 with several neutral partners have been studied using Fourier transform mass spectrometry. The reactant ion was formed by electron impact of various neutral precursors and the internal energy content of the ion estimated using charge transfer/energy-bracketing reactions. These reactions indicate the production of a long-lived excited state ion when C+2 is formed from C2N2 and the production of a mixture of states when formed from small hydrocarbon molecules. The observed reactions and energetics are consistent with the calculated electronic structure of this ion.  相似文献   

13.
The experimental and theoretical study of the electronic structure and IR spectra of the CO-containing molybdenum(0) alkoxide complexes of different nuclearity was carried out. The binding energy of the dinitrogen ligand was calculated for the tetranuclear K4[Mo(OR)(CO)3]4 complexes catalyzing dinitrogen reduction. The theoretical study of structural changes for the 20-electron reduction of the catalytic cluster of the octanuclear [Mg2Mo8O22(MeO)6(MeOH)4]2? complex was performed. The interaction of the reduced cluster with the nitrogenase substrate was considered. Probable coordination modes of N2, C2H2, and CO were analyzed, as well as the protonation reactions of the acetylene complexes, giving rise to two- and four-electron reduction products. The results of quantum chemical calculations are in good agreement with the experimental regularities observed for the catalytic reduction of the substrates in the presence of the Mo-Mg cluster.  相似文献   

14.
Abstract

Activation of small inorganic molecules (H2, N2, O2, CO, NO, CO2, SO2, CS2) by the complexes of transition metal ions like Rh(I), Ir(I), Pt(O) and Ru(II) have gained considerable interest during the last decade.1–8 Because of the similarity of CO2 and CS2 molecules with COS, one would expect COS to form complexes with the transition metal ions analogous to those of CO2 and CS2. In addition, COS being susceptible to decomposition into CO and S, could also form carbonyl complexes. Until now, the only reaction of COS that has been successfully carried out is with [Pt(PPh3)3] which resulted in the formation of [Pt(COS)(PPh3)2] and [Pt2S(CO) (PPh3)3]. 8,9 It will, therefore, be interesting to study further the reactions of COS with the complexes of transition metal ions. The results of a preliminary study of such reactions with [Rh(PPh3)3Cl] and [Pt(PPh3)3] are reported in this communication.  相似文献   

15.
16.
This review paper summarizes the reactivities of metal dithiolene complexes based on the ‘coexistence of aromaticity and unsaturation’ in the five-membered metallacycle, the so-called metalladithiolene ring (MS2C2). The 16-electron [LM(dithiolene)] (LM = CpMIII, Cp*MIII, (C6R6)MII) complexes are coordinatively unsaturated and usually show M-S centered cycloaddition reactions with nucleophiles (e.g. diazoalkanes, organic azides, quadricyclane) and electrophiles (e.g. tetracyanoethylene oxide, activated acetylene). The resulting metalladithiolene cycloadducts, which have three-membered M-S-C or M-S-N rings, further react with protic acids or PR3 to undergo the ring-opening reactions involving the M-C bond, M-S bond or M-N bond cleavages. Furthermore, diverse adduct dissociations are observed by thermal, photochemical or electrochemical redox reactions. Such reactions normally produce the original [LM(dithiolene)] complexes (non-adduct) and the eliminated fragments. Among them, the Co-S centered imido adduct [CpCo(dithiolene)(NR)] (R = Ts, Ms) reacted under thermal conditions in the presence of PR3 to undergo the intramolecular imido migration reaction to the Cp ligand, giving [(C5H4-NHR)Co(dithiolene)] complexes. The M-S centered multinuclear cluster complexes are obtained by the reaction of [LM(dithiolene)] with low valent M(CO)n complexes. The square-planar bis(dithiolene) complexes [M(dithiolene)2]0 (M = Ni, Pd, Pt) or tris(dithiolene) complexes [M(dithiolene)3]0 yield cycloaddition products with olefins. These reactions are due to ligand centered reactions made possible by a molecular orbital overlap between dithiolene LUMO and olefin HOMO. Similar ligand centered adducts are obtained by the reaction of dianionic [M(dithiolene)2]2− with haloalkanes or dihaloalkanes. Also these adducts of bis(dithiolene) complex are dissociated photochemically and electrochemically. This paper also describes the reactivities of organometallic o-carborane dithiolate complexes, which are generally formulated as [LM(S2C2B10H10)] (LM = CpCo, Cp*Rh, Cp*Ir, (p-cymene)Ru and (p-cymene)Os). Diverse addition reactions are reported; in particular, the reaction with acetylene involves B-H bond activation in the carborane moiety.  相似文献   

17.
Collision-induced reactions of size-selected cluster anions, (CO2) n ? and (N2O)nO? with He and Kr atoms were studied at collision energies from 0.1 to 2.0 eV (center-of mass) by means of a tandem mass-spectrometer equipped with a pair of octapole ion guides. The dominant process was evaporation of the constituent molecules from the parent cluster ion. The absolute cross section for the evaporation was measured as functions of the size of the parent cluster ion and the collision energy. The reaction was explained by collisional excitation of the parent cluster ion followed by its unimolecular dissociation. The observed cross sections which correspond to those for the collisional excitation agree with those calculated in terms of charge-induced dipole and induced dipole-induced dipole interactions between the parent cluster ion and the target atom. The distributions of the product ions resulting from the unimolecular dissociation were reproduced by a simple calculation based on RRK theory. In the collision of (CO2) n ? , the cross sections for (CO2) 10 ? and (CO2) 14 ? were significantly small and their abundances in the product ion distributions were particularly large. These findings indicate that (CO2) 10 ? and (CO2) 14 ? are stable species. On the other hand, stable species in (N2O)nO? was found to be (N2O)5O?.  相似文献   

18.
The redox properties of the title mono- and binuclear copper(II) chelates have been investigated by cyclic voltammetry in DMF at a working platinum electrode. The cathodic reduction and anodic oxidation of the investigated chelates produced the corresponding electrochemical CuI and CuIIIspecies stable only in the voltammetric time scale, The effects of substituents on E1/2, redox properties and stability towards oxidation of the complexes were related to the electron-withdrawing or releasing ability of the substituents on the C=N1[H, CH3 or C6H5] and/or N4H [H, C2H5, C6H5 or pClC6H4] groups, The electron attracting substituents stabilize the Cu(II) complexes while electron-donating groups favor oxidation to Cu(III). Changes in the E1/2 for the complexes due to remote substituent effects could be related to changes in basicity of N4H.Thus, variation in N41-J has more influence on E1/2 than changes in C=N1. The correlation between E1/2 of the complexes and pKa of the ligands has been attributed to the spherical potential generated by the electron density of the donor atoms at the antibonding d orbitals.  相似文献   

19.
The reaction of Pb(OAc)2 withmeso-tetraphenylporphin in boiling pyridine orN,N-dimethylformamide gave complexes of PbII with tetraphenylchlorin or PbIV with tetraphenylporphin. The scheme of redox reactions occurring during the complex formation involving Pb2+ as the reducing agent was suggested. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2052–2055, October, 1998.  相似文献   

20.
Mixing CuCl2 ? 2 H2O with benzylamine in alcoholic solutions led to an extremely colorful chemistry caused by the formation of a large number of different complexes. Many of these different species could be structurally characterized. These include relatively simple compounds such as [Cu(L1)4Cl2] (L1=benzylamine) and (HL1)2[CuCl4]. Most interestingly is the easy formation of two cluster complexes, one based on two cluster units Cu4OCl6(L1)4 connected through one [Cu(L1)2Cl2] complex and one based on a cubane‐type cluster ([Cu4O4](C11H14)4Cl4). Both clusters proved to be highly reactive in a series of oxidation reactions of organic substrates by using air or peroxides as oxidants. Furthermore, it was possible to isolate and structurally characterize ([Cu(L1)Cl]3 and [Cu(benz2mpa)2]CuCl2 (benz2mpa=benzyl‐(2‐benzylimino‐1‐methyl‐propylidene)‐amine), two copper(I) complexes that formed in solution, demonstrating the high redox activity of the cluster systems. In addition, it was possible to solve the molecular structures of the compounds Cu4OCl6(MeOH)4, [Cu(MeOH)2Cl2], [Cu(aniline)2Cl2], and an organic side product (HC13H19NOCl). In fact all determined structures are of a known type but the chemical relation between these compounds could be explained for the first time. The paper describes these different compounds and their chemical equilibria. Some of these complexes seem to be relevant in catalytic oxidation reactions and their reactivity is discussed in more detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号