首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a study related to the impact of air pollution on forests, needles from a healthy and a severely damaged Norway spruce tree were analysed by temperature-programmed pyrolysis/field ionization (FI) mass spectrometry. Dried and pulverized spruce needles were heated at a rate of 0.6°C s?1 to 450°C in the high vacuum of a FI ion source. Over 100 mass spectra were recorded electrically during each analysis. From each mass spectrum, average molecular weights of the pyrolysis products were calculated; their variation with pyrolysis temperature is discussed. The mass spectra in the range m/z 100–600 are used to calculate partial weight-loss curves. The FI mass spectra are evaluated by principal component analysis and factor rotation. The three-factor spectra based on loadings of the rotated principal components show typical FI signals which are produced during pyrolysis at low, medium and high temperatures. These signal patterns are interpreted as molecular ions of thermally stable, relatively volatile plant constituents and molecular ions of thermal degradation products derived from the thermolysis of carbohydrates, lignin and other biopolymers which occur in conifer needles. Medium- and high-temperature products of lignin can be distinguished. Principal component scores can be used to simulate the appearance of single FI signals, i.e., pyrolysis products. The evaluation of time-resolved pyrolysis and soft ionization mass spectrometric data from a single sample by principal component analysis and factor rotation appears to be suitable for characterization of the major chemical components and their thermal behaviour in complex biological samples.  相似文献   

2.
The rapid, reproducible, chemical characterization of complex environmental materials such as plants, humic substances and whole soil can be performed by controlled thermal degradation. Except for drying and milling no pre-treatment of the samples is required. Biomacromolecular cleavage during a short degradation step directly in the ion source of a mass spectrometer results in the production of high-mass chemical subunits. Short reaction times and small amounts of sample favour the generation of large, thermal fragments, i.e., chemical building blocks, which can be identified and correlated with the structure of the polymeric biomaterials investigated. The principal aim is to monitor the primary, thermal fragmentation by high molecular ion intensities of the pyrolyzates and to avoid consecutive, mass spectrometric fragmentation as far as possible.For the detection and identification of the pyrolysis (Py) products, a combination with time-/temperature-controlled mass spectrometry (MS) is used. Typical heating rates are 0.2–10°C/s and the temperature range is 50–800°C. Soft ionization techniques such as field ionization (FI), field desorption, chemical ionization (CI) and, to some extent, fast atom bombardment are employed in the positive and negative modes. The results of direct Py-MS are supported by high-resolution mass measurements using electric or photographic detection and Curie-point pyrolysis in combination with gas chromatography-electron ionization/FI/CIMS and library searches for the identification of the pyrolysis products.Fingerprinting and time-resolved Py-MS of aquatic and terrestrial humic substances are reported. The methodology for the investigations of dynamic processes during the volatilization and thermal decomposition of these complex biomaterials is illustrated. Weight loss curves and the temperature function of accurate molecular weight averages for aquatic fulvic and humic acid are derived from the Py-FIMS data. Initial results on the differentiation of soil horizons in a moder profile by Py-FIMS and pattern recognition are presented. In particular, the chemometric evaluation appears promising for future Py-MS studies of humic substances and whole soils, but also for fossil fuels, synthetic polymers and food. In an integrated approach, the linking of conventional chemical and spectroscopic data with the high-mass signals in pyrolysis-mass spectra will be the focus of forthcoming work. Preliminary results for combining wet-chemical data with those of 13C nuclear magnetic resonance, Fourier transform infrared and electron spin resonance spectroscopy are put forward in this survey. Finally, initial results of pilot studies to detect biocides such as atrazine directly in soils using Py-FIMS are demonstrated.  相似文献   

3.
Li+ ion attachment mass spectrometry (Li+IAMS) with a temperature-programmed direct probe allows the analysis of nonvolatile complex natural materials. With this technique, chemical species can be detected at atmospheric pressure in real time, a capability that is particularly useful for analyzing evolved gas products. The products of pyrolysis can be studied by analyzing the mass spectra of degraded samples. Here, we investigated the pyrolysis of Japanese lacquer films (urushi) through temperature-programmed heating using direct probe-Li+IAMS. The analyzed sample had a characteristic profile in both the appearance of unique components and the distribution of pyrolysis products. Among the pyrolysis products detected, carboxylic acids, phenols, catechols, and aliphatic and aromatic hydrocarbons were most abundant. We compared our results with those of a previous pyrolysis/gas chromatography/mass spectrometry study of Japanese urushi samples. This comparison demonstrated significant differences between the two techniques in terms of the products and their distributions in the Japanese lacquer films. Our approach offers the opportunity to directly study the pyrolysis processes occurring in complex natural materials and suggests a way to determine the identity of a lacquer source by identifying different types of lacquer monomer.  相似文献   

4.
The composition and molecular residence time of soil organic matter (SOM) in four particle‐size fractions (POM >200 µm, POM 63–200 µm, silt and clay) were determined using Curie‐point pyrolysis/gas chromatography coupled on‐line to mass spectrometry. The fractions were isolated from soils, either continuously with a C3 wheat (soil 13C value = ?26.4‰), or transferred to a C4 maize (soil 13C value = ?20.2‰) cropping system 23 years ago. Pyrograms contained up to 45 different pyrolysis peaks; 37 (ca. 85%) were identifiable compounds. Lignins and carbohydrates dominated the POM fractions, proteins were abundant, but lignin was (nearly) absent in the silt and clay fractions. The mean turnover time (MRT) for the pyrolysis products in particulate organic matter (POM) was generally <15 years (fast C pool) and 20–300 years (medium or slow C pools) in silt and clay fractions. Methylcyclopentenone (carbohydrate) in the clay fraction and benzene (mixed source) in the silt fraction exhibited the longest MRTs, 297 and 159 years, respectively. Plant‐derived organic matter was not stored in soils, but was transformed to microbial remains, mainly in the form of carbohydrates and proteins and held in soil by organo‐mineral interactions. Selective preservation of plant‐derived OM (i.e. lignin) based on chemical recalcitrance was not observed in these arable soils. Association/presence of C with silt or clays in soils clearly increased MRT values, but in an as yet unresolved manner (i.e. ‘truly’ stabilized, or potentially still ‘labile’ but just not accessible C). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Pyrolysis of tobacco, a complex biomass matrix, was investigated to further understand thermal decomposition processes that are accompanied by evaporation of relatively stable non-polymeric endogenous compounds. Pyrolysis of two types of tobacco, bright and burley were studied using thermo-gravimetry mass spectrometry (TG–MS) and field ionization mass spectrometry (FIMS) analyses. Tobacco contains biopolymers and many non-polymeric compounds. Unlike many biomass pyrolysis tars derived from wood or cellulose, tobacco pyrolysis tars can contain significant amounts of high molecular weight endogenous constituents such as waxes and terpenes that are transferred intact. The phenomenon of evaporation of high molecular weight non-polymeric compounds is illustrated by tobacco micro-sample pyrolysis in FIMS under vacuum (at a pressure of 10−4 Torr). These experiments indicate that the evaporation of relatively stable high molecular weight species occurs below about 220 °C generating 300 Da and higher molecular weight products; and, decomposition of tobacco biopolymers such as starch, cellulose, hemicellulose, lignin, and pectin occurs mostly at temperatures higher than 220 °C producing species mostly with molecular weight below 300 Da. Some of the high molecular weight compounds, such as stigmasterol (412 Da), α-tocopherol (430 Da), and solanesol (630 Da), were tentatively identified using the FIMS spectra.  相似文献   

6.
The conversion of grassland into cultivated land is a common agricultural practice, generally leading to the decrease of the soil organic matter (SOM) content. In this study, we analysed quantitative changes in carbon content. Additionally qualitative changes occurring in the soil organic matter composition on a molecular basis were assessed using Curiepoint pyrolysis coupled to gas chromatography and mass spectrometry (pyrolysis GC/MS). The aim of the study was to follow the development of SOM in grassland soil, after conversion into arable soil.Soil was sampled before the conversion (0 month) as well as 3 months, and 1 year after the conversion. The samples were treated with 10% HF to remove mineral material before being subjected to analysis of the bulk chemical composition by pyrolysis GC/MS. The relative contributions of single molecules were obtained by the integration of the total ion chromatogram.Pyrolysis products derived from lignins, proteins and polysaccharides were identified in all samples. SOM under grassland, arable land and converted grassland released similar pyrolysis products. Three months after the conversion, lignin-derived pyrolysis products were found at lower concentrations in the converted grassland soil. Principal component analysis showed that arable land, grassland and the converted grassland could be distinguished using the score plot of the 2nd and 3rd principal components. The differences induced by grassland conversion are only transitory and 1 year after the conversion, SOM has a similar composition as SOM of the initial grassland soil.  相似文献   

7.
Oxime-trimethylsilylation (TMS) method was applied to the analysis of wood pyrolysate. Quantitative determination of hydroxycarbonyls such as glycolaldehyde, which are important pyrolysis products of wood polysaccharide, is difficult as indicated by the gas chromatography–mass spectrometry (GC–MS) and 1H NMR analysis of glycolaldehyde. Glycolaldehyde decomposed into formic acid and the unknown compound with molecular weight of 72 at the injector in its GC analysis. 1H NMR analysis of glycolaldehyde in acetone-d6 indicated the complex mixture with its dimerization products. Glycolaldehyde was quantified precisely as oxime-TMS derivative (E/Z-mixture) of the monomer by GC after oximation with hydroxylamine hydrochloride and the following trimethylsilylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). With this method, the other carbonyls such as furfural, 5-hydroxymethylfurfural and hydroxyacetone could also be determined as their oxime-trimethylsilylated derivatives. Furthermore, anhydrosugars such as levoglucosan and levomannosan in wood pyrolysate were also determined, simultaneously, as their TMS derivatives. Finally, oxime-TMS method is proposed as a quantification method of the pyrolysis products derived from wood polysaccharide.  相似文献   

8.
The stable oxygen isotope signature (δ18O) of soil is expected to be the result of a mixture of components within the soil with varying δ18O signatures. Thus, the δ18O of soils should provide information about the soil's substrate, especially about the relative contribution of organic matter versus minerals. As there is no standard method available for measuring soil δ18O, the method for the measurement of single components using a high‐temperature conversion elemental analyser (TC/EA) was adapted. We measured δ18O in standard materials (IAEA 601, IAEA 602, Merck cellulose) and soils (organic and mineral soils) in order to determine a suitable pyrolysis temperature for soil analysis. We consider a pyrolysis temperature suitable when the yield of signal intensity (intensity of mass 28 per 100 µg) is at a maximum and the acquired raw δ18O signature is constant for the standard materials used and when the quartz signal from the soil is still negligible. After testing several substances within the temperature range of 1075 to 1375°C we decided to use a pyrolysis temperature of 1325°C for further measurements. For the Urseren Valley we have found a sequence of increasing δ18O signatures from phyllosilicates to upland soils, wetland soils and vegetation. Our measurements show that the δ18O values of upland soil samples differ significantly from wetland soil samples. The latter can be related to the changing mixing ratio of the mineral and organic constituents of the soil. For wetlands affected by soil erosion, we have found intermediate δ18O signatures which lie between typical signatures for upland and wetland sites and give evidence for the input of upland soil material through erosion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Pyrolysis of the complex (ato-N2)pentaammincobalt(III) perchlorate and the ligand 5-nitrotetrazole, and also of the initial complex aquapentaammincobalt(III) perchlorate was studied by the mass spectroscopy method. The leading oxidizer of ligands in the complexes is changed for the outer-sphere perchlorate ion at the pyrolysis temperature of ~250°C.  相似文献   

10.
Pyrolysis-atmospheric pressure chemical ionization was used to study the thermal decomposition of the energetic material cyclotrimethylenetrinitramine (RDX) and characterization of the individual molecular ion products was accomplished by tandem mass spectrometry. The analysis was aided with pyrolysis mass spectra of the (15N)- and perdeuterated RDX isotopes, and molecular formulae were derived for the m/z 46, 60, 74, 75, 85 and 98 molecular ions in the RDX pyrolysis mass spectrum. Equivalent fragments between the daughter ion mass spectra of the unlabeled and labeled RDX were determined in order to define a structure for each pyrolysis feature. Daughter ion mass spectra of pure reference compounds confirmed the identity of five of the six molecular ions. Perdeuterated RDX analyses provided evidence that m/z 74 and 75 are N,N-dimethylformamide and N-nitrosodimethylamine, respectively; m/z 46, 60 and 85 were identified as the protonated forms of formamide, N-methylformamide and dimethylaminoacetonitrile, respectively.  相似文献   

11.
Water-insoluble pyrolytic cellulose with similar appearance to pyrolytic lignin was found in cellulose fast pyrolysis oil. The influence of pyrolysis temperature on pyrolytic cellulose was studied in a temperature range of 300–600 °C. The yield of the pyrolytic cellulose increased with temperature rising. The pyrolytic cellulose was characterized by various methods. The molecular weight distribution of pyrolytic cellulose was analyzed by gel permeation chromatography (GPC). Four molecular weight ranges were observed, and the Mw of the pyrolytic cellulose varied from 3.4 × 103 to 1.93 × 105 g/mol. According to the elemental analysis (EA), the pyrolytic cellulose possessed higher carbon content and lower oxygen content than cellulose. Thermogravimetric analysis (TGA) indicated that the pyrolytic cellulose underwent thermo-degradation at 127–800 °C and three mass loss peaks were observed. Detected by the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS), the main pyrolysis products of the pyrolytic cellulose included saccharides, ketones, acids, furans and others. Fourier transforms infrared spectroscopy (FTIR) also demonstrated that the pyrolytic cellulose had peaks assigned to CO stretching and glycosidic bond, which agreed well with the Py-GC/MS results. The pyrolytic cellulose could be a mixture of saccharides, ketones, and their derivatives.  相似文献   

12.
A coal tar pitch was fractionated by solvent solubility into heptane‐solubles, heptane‐insoluble/toluene‐solubles (asphaltenes), and toluene‐insolubles (preasphaltenes). The aim of the work was to compare the mass ranges of the different fractions by several different techniques. Thermogravimetric analysis, size‐exclusion chromatography (SEC) and UV‐fluorescence spectroscopy showed distinct differences between the three fractions in terms of volatility, molecular size ranges and the aromatic chromophore sizes present. The mass spectrometric methods used were gas chromatography/mass spectrometry (GC/MS), pyrolysis/GC/MS, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICRMS) and laser desorption time‐of‐flight mass spectrometry (LD‐TOFMS). The first three techniques gave good mass spectra only for the heptane‐soluble fraction. Only LDMS gave signals from the toluene‐insolubles, indicating that the molecules were too involatile for GC and too complex to pyrolyze into small molecules during pyrolysis/GC/MS. ESI‐FTICRMS gave no signal for toluene‐insolubles probably because the fraction was insoluble in the methanol or acetonitrile, water and formic acid mixture used as solvent to the ESI source. LDMS was able to generate ions from each of the fractions. Fractionation of complex samples is necessary to separate smaller molecules to allow the use of higher laser fluences for the larger molecules and suppress the formation of ionized molecular clusters. The upper mass limit of the pitch was determined as between 5000 and 10 000 u. The pitch asphaltenes showed a peak of maximum intensity in the LDMS spectra at around m/z 400, in broad agreement with the estimate from SEC. The mass ranges of the toluene‐insoluble fraction found by LDMS and SEC (400–10 000 u with maximum intensity around 2000 u by LDMS and 100–9320 u with maximum intensity around 740 u by SEC) are higher than those for the asphaltene fraction (200–4000 u with maximum intensity around 400 u by LDMS and 100–2680 u with maximum intensity around 286 u by SEC) and greater than values considered appropriate for petroleum asphaltenes (300–1200 u with maximum intensity near 700 u). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The potential of vacuum pyrolysis to convert sugar cane bagasse into char materials for wastewater treatment and soil amendment is the focus of this research paper. Vacuum pyrolysis produces both bio-oil and char in similar quantities. Vacuum pyrolysis has the potential to produce high quality chars for wastewater treatment and soil amendment directly during the conversion process, with no further upgrading required. In the present study, chars with the required porous structure was obtained directly from the vacuum pyrolysis process, making it very efficient as adsorbent both in terms of methylene blue (MB) adsorption with a N2-BET surface area of 418 m2 g−1. Further steam activation of the chars benefited the development of meso- and macroporosity, although this upgrading step was not essential to achieve the required performance of char as an MB adsorbent. The development of large pores during the vacuum pyrolysis favored physisorption of MB, rather than chemisorption. The chemical nature of the vacuum pyrolysis char resulted in a slightly acidic surface (pH 6.56). The biochar from vacuum pyrolysis can be considered as a highly beneficial soil amendment, as it would enhance soil nutrient and water holding capacity, due to its high cation exchange capacity (122 cmolc kg−1) and high surface area. It is also a good source of beneficial plant macro- and micronutrients and contains negligible levels of toxic elements.  相似文献   

14.
n-Heptane is the most important straight chain paraffin in the fossil-fuel industry. In this work, pyrolysis behavior of n-heptane at high temperature is investigated by a se-ries of ReaxFF based reactive molecular dynamics simulations. Temperature effects on then-heptane pyrolysis and related products distributions have been detailedly analyzed. The simulation results indicate that the temperature effect is characterized in stages. High tem-perature can accelerate the decomposition of n-heptane, but the influence becomes small after it reaches a certain level. According to the different reaction behaviors, pyrolysis of n-heptane could be divided into three stages. The variation trends of the mass fraction evolu-tion of ethylene (C2H4), C3, and C4 calculated from reactive molecular dynamics simulations are in good agreement with the previous experimental results. The apparent activation en-ergy extracted from the first-order kinetic analysis is 53.96 kcal/mol and a pre-exponential factor is 55.34×1013 s-1, which is reasonably consistent with the experimental results.  相似文献   

15.
A variety of crude oil samples have been investigated by the combined methods of thermal analysis and mass spectrometry by means of a newly developed prototype of a thermogravimetry—single photon ionisation time-of-flight mass spectrometer coupling (TG-SPI-TOFMS). Single photon ionisation (SPI) was conducted utilising a novel electron beam pumped argon excimer lamp (EBEL) as photon source, and a TOFMS with orthogonal acceleration has been applied for the detection of the mass to charge signals. The advantage of the soft SPI technique over EI for the analysis of such complex samples could be clearly demonstrated, as the aliphatic hydrocarbons present in crude oil may be detected via their respective molecular ion signals, not showing the intense fragmentation typical for EI spectra of this substance class. The application of SPI revealed furthermore two distinct decomposition regions, dominated by evaporation and pyrolysis processes, respectively. Moreover, different crude oils could be distinguished by TA/SPI mass spectra due to their unique molecular signatures.  相似文献   

16.
Andosols are usually formed from volcanic substrates, with thick A horizons high in organic carbon mainly in the form of stabilized humic fractions. The peculiar properties of these soils are, to large extent, affected by poorly crystalline materials like allophanes, imogolite and other Fe and Al oxyhydroxides that induce intense organo-mineral interactions which are considered to play a relevant role in OM protection against biodegradation as regards other soils developed under similar climatic conditions. Little is known about the molecular composition of this stabilized OM in a soil scenario often considered as an efficient C-sink in terms of C sequestration processes.

Whole soil samples in addition to isolated humic and fulvic acids from organic A horizons of three soils with andic properties and one non-andic soil (Sodic Cambisol) from the island of Tenerife (Canary Islands, Spain) were analysed by double shot pyrolysis-gas chromatography–mass spectrometry (Py-GC/MS) in order to get some insight on the molecular composition of different structural domains of progressive structural stability.

Clear differences were found between soils, both in thermal desorption and pyrolysis behaviour of humic substances. In general the results suggest large yields of aliphatic (both alkyl and carbohydrate-derived pyrolysis compounds) pointing to high-performance processes of incorporation of aliphatic humic constituents in andosols probably favoured by interactions with amorphous minerals, whereas in non-andic soils the latter are comparatively less stabilized and are removed in early pyrolysis stages as if they occurred as loosely joined, thermoevaporation-released products.

In fact, compared to Cambisol, humic and fulvic acids from andic soils led to comparatively richer pyrograms and compound assemblages. The lack of similar amounts of these loosely joined, mainly aliphatic structures after thermal desorption of the whole andic soils indicate an origin for humic substances based on rapid sequestration of C-forms of recent (litter or microbial) origin.  相似文献   


17.
This perspective article provides an assessment of the state-of-the-art in the molecular-resolution analysis of complex organic materials. These materials can be divided into biomolecules in complex mixtures (which are amenable to successful separation into unambiguously defined molecular fractions) and complex nonrepetitive materials (which cannot be purified in the conventional sense because they are even more intricate). Molecular-level analyses of these complex systems critically depend on the integrated use of high-performance separation, high-resolution organic structural spectroscopy and mathematical data treatment. At present, only high-precision frequency-derived data exhibit sufficient resolution to overcome the otherwise common and detrimental effects of intrinsic averaging, which deteriorate spectral resolution to the degree of bulk-level rather than molecular-resolution analysis. High-precision frequency measurements are integral to the two most influential organic structural spectroscopic methods for the investigation of complex materials—NMR spectroscopy (which provides unsurpassed detail on close-range molecular order) and FTICR mass spectrometry (which provides unrivalled resolution)—and they can be translated into isotope-specific molecular-resolution data of unprecedented significance and richness. The quality of this standalone de novo molecular-level resolution data is of unparalleled mechanistic relevance and is sufficient to fundamentally advance our understanding of the structures and functions of complex biomolecular mixtures and nonrepetitive complex materials, such as natural organic matter (NOM), aerosols, and soil, plant and microbial extracts, all of which are currently poorly amenable to meaningful target analysis. The discrete analytical volumetric pixel space that is presently available to describe complex systems (defined by NMR, FT mass spectrometry and separation technologies) is in the range of 108–14 voxels, and is therefore capable of providing the necessary detail for a meaningful molecular-level analysis of very complex mixtures. Nonrepetitive complex materials exhibit mass spectral signatures in which the signal intensity often follows the number of chemically feasible isomers. This suggests that even the most strongly resolved FTICR mass spectra of complex materials represent simplified (e.g. isomer-filtered) projections of structural space.  相似文献   

18.
Measuring polymer solubility accurately and precisely is challenging. This is especially true at unfavourable solvent compositions, when only very small amounts of polymer dissolve. In this paper, pyrolysis–gas chromatography–mass spectrometry (Py-GC-MS) is demonstrated to be much more informative and sensitive than conventional methods, such as ultraviolet spectroscopy. By using a programmed-temperature-vapourisation injector as the pyrolysis chamber, we demonstrate that Py-GC-MS can cover up to five orders of magnitude in dissolved polymer concentrations. For polystyrene, a detection limit of 1 ng mL?1 is attained. Dissolution in poor solvents is demonstrated to be discriminating in terms of the analyte molecular weight. Py-GC-MS additionally can yield information on polymer composition (e.g. in case of copolymers). In combination with size-exclusion chromatography, Py-GC-MS allows us to estimate the molecular weight distributions of minute amounts of a dissolved polymer and variations therein as a function of time.
Figure
SEC/-/Py-GC-MS (reconstructed, chromatograms) of dissolved polymer in ACN/THF%.  相似文献   

19.
Fractions of dissolved organic matter (DOM) from the Loire and the Gartempe rivers were obtained using Amberlite XAD resin fractionation procedure. According to the eluting system used and to the polarity of their components, the fractions were termed hydrophobic (HPO) and transphilic (TPI) for the Loire (elution with acetonitrile/water mixture) and hydrophobic acid (HPOA) and transphilic acid (TPIA) for the Gartempe (elution with NaOH). In addition, for the Loire, colloids (COL) were pre-isolated through a dialysis step. The composition of the three fractions from the Loire was investigated with solid state cross polarisation/magic angle spinning (CP/MAS) 13C NMR and Curie point pyrolysis at 650 °C with and without tetramethylammonium hydroxide (TMAH). Separation and identification of the released compounds were performed using gas-chromatography/mass spectrometry (GC/MS) and focussed on nitrogen-containing pyrolysis products (N-products). Quantitative differences were observed between the N-product distribution of the HPO and TPI fractions, whilst the few N-products from the COL fraction exhibited different structures corresponding to peptidoglycan contribution. Comparison with previous results obtained for two DOM fractions (HPOA and TPIA) from the Gartempe river (France) revealed that pyrolysis detection of nitrogen containing molecules is not only related to the nitrogen content of the fractions, even in the case of similar hydrophobicity, but also likely to the functionality of nitrogen in the macromolecule sources. To correlate the molecular level information about N-containing moieties with the functionality of nitrogen in the macromolecular sources, the five fractions of DOM were investigated through X-ray photoelectron spectroscopy (XPS) and solid state cross polarisation/magic angle spinning (CP/MAS) 15N NMR. C1s XPS and 15N NMR analyses revealed an important contribution from amide nitrogen in all the DOM fractions, with a large increase from the hydrophobic fractions to the transphilic and colloids ones. Moreover, 15N NMR revealed an additional pyrrole nitrogen contribution in the HPO fraction of the Loire and in the TPI and TPIA fractions of both rivers. For the two rivers, the δ 15N values were maximal for the fraction containing the highest proportion of amide N, and decreased in parallel with increasing pyrrole N contribution. Only the hydrophobic acid fraction of the Gartempe, which did not contain any pyrrole N was characterised by a lack of N-containing pyrolysis products, suggesting that their detection could be dependent on the presence of pyrrole N in the macromolecule sources.  相似文献   

20.
The structural characterisation of a coal liquefaction extract and its three fractions separated by planar chromatography has been described. Size exclusion chromatography showed the molecular mass distributions to become progressively larger with decreasing mobility on the plate. UV-fluorescence spectroscopy of the fractions indicated parallel increases in the sizes of polynuclear aromatic ring systems. Analysis by probe-mass spectrometry of the 'whole' coal extract showed the expected array of small polynuclear aromatic groups extending to m/z 450. The probe mass spectra of the lightest fraction ('mobile in pyridine and acetonitrile') showed similar features, except for effects due to vacuum drying to remove solvent. In sharp contrast, the two heaviest fractions ('mobile in pyridine and immobile in acetonitrile' and 'immobile in pyridine') showed no significant ions other than those from residual NMP solvent (m/z 98 and 99). Pyrolysis-gas chromatography/mass spectrometry of these two heaviest fractions showed only traces of aromatic compounds or fragments. The aromatic pyrolysis products of these fractions were too large and involatile to pass through the GC column. The major components observed in the pyrolysis-gas chromatography/mass spectrometry of the two heavy fractions were alkanes and alkenes, ranging between C10-C25. Since none of the samples contained free alkanes, alkenes or cycloalkanes before pyrolysis, they were generated during the pyrolysis step. The shifts of UV-fluorescence spectral intensity to shorter wavelengths with decreasing size indicated by size exclusion chromatography (SEC) provide direct evidence of differences in structure with changing molecular mass. This evidence strongly suggests that species identified as being of large molecular mass in this extract sample are not composed of molecular aggregates. It remains difficult to establish whether and when it would be legitimate to invoke molecular aggregates to explain the large molecular masses (MMs) identified here and in other work. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号