首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
The proposed scheme, which is a conservative form of the interpolated differential operator scheme (IDO-CF), can provide high accurate solutions for both compressible and incompressible fluid equations. Spatial discretizations with fourth-order accuracy are derived from interpolation functions locally constructed by both cell-integrated values and point values. These values are coupled and time-integrated by solving fluid equations in the flux forms for the cell-integrated values and in the derivative forms for the point values. The IDO-CF scheme exactly conserves mass, momentum, and energy, retaining the high resolution more than the non-conservative form of the IDO scheme. A direct numerical simulation of turbulence is carried out with comparable accuracy to that of spectral methods. Benchmark tests of Riemann problems and lid-driven cavity flows show that the IDO-CF scheme is immensely promising in compressible and incompressible fluid dynamics studies.  相似文献   

2.
A novel hybrid numerical scheme with built-in hyperviscosity has been developed to address the accuracy and numerical instability in numerical simulation of isotropic compressible turbulence in a periodic domain at high turbulent Mach number. The hybrid scheme utilizes a 7th-order WENO (Weighted Essentially Non-Oscillatory) scheme for highly compressive regions (i.e., shocklet regions) and an 8th-order compact central finite difference scheme for smooth regions outside shocklets. A flux-based conservative and formally consistent formulation is developed to optimize the connection between the two schemes at the interface and to achieve a higher computational efficiency. In addition, a novel numerical hyperviscosity formulation is proposed within the context of compact finite difference scheme for the smooth regions to improve numerical stability of the hybrid method. A thorough and insightful analysis of the hyperviscosity formulation in both Fourier space and physical space is presented to show the effectiveness of the formulation in improving numerical stability, without compromising the accuracy of the hybrid method. A conservative implementation of the hyperviscosity formulation is also developed. Combining the analysis and test simulations, we have also developed a criterion to guide the specification of a numerical hyperviscosity coefficient (the only adjustable coefficient in the formulation). A series of test simulations are used to demonstrate the accuracy and numerical stability of the scheme for both decaying and forced compressible turbulence. Preliminary results for a high-resolution simulation at turbulent Mach number of 1.08 are shown. The sensitivity of the simulated flow to the detail of thermal forcing method is also briefly discussed.  相似文献   

3.
唐玲艳  宋松和 《计算物理》2014,31(2):155-164
针对双曲型守恒律方程问题,发展一种有效的自适应多分辨分析方法.通过对嵌套网格上的数值解构造离散多分辨分析,建立小波系数与多层嵌套网格点之间的对应关系.对于小波系数较大的网格点采用高精度WENO格式计算,其余区域则直接采用多项式插值.数值试验表明,该方法在保持原规则网格方法的精度和分辨率的同时,显著地减少计算的CPU时间.  相似文献   

4.
摄动有限体积法重构近似高精度的意义   总被引:3,自引:0,他引:3  
高智  向华  申义庆 《计算物理》2004,21(2):131-136
研讨有限体积(FV)方法重构近似高精度的作用问题.FV方法中积分近似采用中点规则为二阶精度时,重构近似高精度(精度高于二阶)的意义和作用是一个有争议的问题.利用数值摄动技术[1,2]构造了标量输运方程的积分近似为二阶精度、重构近似为任意阶精度的迎风型和中心型摄动有限体积(PFV)格式.迎风PFV格式无条件满足对流有界准则(CBC),中心型PFV格式为正型格式,两者均不会产生数值振荡解.利用PFV格式求解模型方程的数值结果表明:与一阶迎风和二阶中心格式相比,PFV格式精度高、对解的间断分辨率高、稳定性好、雷诺数的适用范围大,数值地"证实"重构近似高精度和PFV格式的实际意义和好处.  相似文献   

5.
本文分别给出了采用有限体积计算时采用高阶格式遇到的网格单元体界面上三阶、四阶与五阶格式精度下的数值通量表达式,并且给出了确定权函数过程中所遇到的光滑因子表达式.文中首先对模型方程进行了格式分辨率方面的检验,然后将格式用于某涡轮级的实际流场计算.数值结果表明:所给出的高分辨率、高阶格式具有较高的激波分辨率并且具有较高的数值精度,在计算流场时,它可以用较少网格点去取代普通低阶精度格式下所采用的较密网格.  相似文献   

6.
In this paper, a class of finite difference schemes which achieves low dispersion and controllable dissipation in smooth region and robust shock-capturing capabilities in the vicinity of discontinuities is presented. Firstly, a sufficient condition for semi-discrete finite difference schemes to have independent dispersion and dissipation is derived. This condition enables a novel approach to separately optimize the dissipation and dispersion properties of finite difference schemes and a class of schemes with minimized dispersion and controllable dissipation is thus obtained. Secondly, for the purpose of shock-capturing, one of these schemes is used as the linear part of the WENO scheme with symmetrical stencils to constructed an improved WENO scheme. At last, the improved WENO scheme is blended with its linear counterpart to form a new hybrid scheme for practical applications. The proposed scheme is accurate, flexible and robust. The accuracy and resolution of the proposed scheme are tested by the solutions of several benchmark test cases. The performance of this scheme is further demonstrated by its application in the direct numerical simulation of compressible turbulent channel flow between isothermal walls.  相似文献   

7.
A novel and accurate finite volume method has been presented to solve the shallow water equations on unstructured grid in plane geometry. In addition to the volume integrated average (VIA moment) for each mesh cell, the point values (PV moment) defined on cell boundary are also treated as the model variables. The volume integrated average is updated via a finite volume formulation, and thus is numerically conserved, while the point value is computed by a point-wise Riemann solver. The cell-wise local interpolation reconstruction is built based on both the VIA and the PV moments, which results in a scheme of almost third order accuracy. Efforts have also been made to formulate the source term of the bottom topography in a way to balance the numerical flux function to satisfy the so-called C-property. The proposed numerical model is validated by numerical tests in comparison with other methods reported in the literature.  相似文献   

8.
张林  葛永斌 《计算物理》2020,37(3):307-319
针对二维非定常半线性扩散反应方程,空间导数项采用四阶紧致差分公式离散,时间导数项采用四阶向后Euler公式进行离散,提出一种无条件稳定的高精度五层全隐格式.格式截断误差为Oτ4+τ2h2+h4),即时间和空间均具有四阶精度.对于第一、二、三时间层采用Crank-Nicolson方法进行离散,并采用Richardson外推公式将启动层时间精度外推到四阶.建立适用于该格式的多重网格方法,加快在每个时间层上迭代求解代数方程组的收敛速度,提高计算效率.最后通过数值实验验证格式的精确性和稳定性以及多重网格方法的高效性.  相似文献   

9.
将加权ENO格式推广到非结构三角形网格上,构造了一类加权ENO有限体积格式,提出的插值多项式的构造方式,可以减少计算时间.对于出现的病态方程组,给出了解决方法.此外还给出了插值点的选取方式及加权因子的构造方法.结合三阶TVD Runge Kutta时间离散,对二维欧拉方程组进行了数值试验.  相似文献   

10.
The paper makes a comparative study of the finite element method (FEM) and the finite difference method (FDM) for two-dimensional fractional advection-dispersion equation (FADE) which has recently been considered a promising tool in modeling non-Fickian solute transport in groundwater. Due to the non-local property of integro-differential operator of the space-fractional derivative, numerical solution of FADE is very challenging and little has been reported in literature, especially for high-dimensional case. In order to effectively apply the FEM and the FDM to the FADE on a rectangular domain, a backward-distance algorithm is presented to extend the triangular elements to generic polygon elements in the finite element analysis, and a variable-step vector Grünwald formula is proposed to improve the solution accuracy of the conventional finite difference scheme. Numerical investigation shows that the FEM compares favorably with the FDM in terms of accuracy and convergence rate whereas the latter enjoys less computational effort.  相似文献   

11.
This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.  相似文献   

12.
We have applied the conservative form of the Interpolated Differential Operator (IDO-CF) scheme in order to solve the Vlasov–Poisson equation, which is one of the multi-moment schemes. Through numerical tests of the nonlinear Landau damping and two-stream instability, we compared the present scheme with other schemes such as the Spline and CIP ones. We mainly investigated the conservation property of the L1-norm, energy, entropy and phase space area for each scheme, and demonstrated that the IDO-CF scheme is capable of performing stable long time scale simulation while maintaining high accuracy. The scheme is based on an Eulerian approach, and it can thus be directly used for Fokker–Planck, high dimensional Vlasov–Poisson and also guiding-center drift simulations, aiming at particular problems of plasma physics. The benchmark tests for such simulations have shown that the IDO-CF scheme is superior in keeping the conservation properties without causing serious phase error.  相似文献   

13.
A bounded high order upwind scheme is presented for the modified Burgers' equation by using the normalized-variable formulation in the finite volume framework. The characteristic line of the present scheme in the normalized-variable diagram is designed on the Hermite polynomial interpolation. In order to suppress unphysical oscillations, the present scheme respects both the TVD (total variational diminishing) constraint and CBC (convection boundedness criterion) condition. Numerical results demonstrate the present scheme possesses good robustness and high resolution for the modified Burgers' equation.  相似文献   

14.
The numerical scattering caused by spatial discretization in finite volume method is discussed. Based on an analysis of the generation process of numerical scattering, a physical model of central laser incidence to a two-dimensional rectangle containing semitransparent medium is established to validate the numerical scattering, with Monte Carlo method as benchmark, in which numerical scattering does not exist. Numerical scattering will be affected by spatial grid number, spatial differential schemes and spectral absorption coefficient. With the spatial grid number increasing, numerical scattering will be decreased. The accuracy of the diamond scheme is the highest, and the exponential scheme is a bit lower, the lowest accuracy of the three schemes is the step scheme. The tendency of numerical scattering is reverse, i.e., the step scheme produces minimum numerical scattering, and exponential scheme produces more, while the diamond scheme produces maximum among three methods. When the bias of absorption efficient is high, the numerical scattering cannot be eliminated only by increasing the grid number. If we set the direction of laser incidence as central axis, it can be seen that numerical scattering distributed symmetry along the axis, which can be called as symmetrical cross-scattering. All of the three schemes show symmetrical cross-scattering.  相似文献   

15.
The development of a compact fourth-order finite volume method for solutions of the Navier–Stokes equations on staggered grids is presented. A special attention is given to the conservation laws on momentum control volumes. A higher-order divergence-free interpolation for convective velocities is developed which ensures a perfect conservation of mass and momentum on momentum control volumes. Three forms of the nonlinear correction for staggered grids are proposed and studied. The accuracy of each approximation is assessed comparatively in Fourier space. The importance of higher-order approximations of pressure is discussed and numerically demonstrated. Fourth-order accuracy of the complete scheme is illustrated by the doubly-periodic shear layer and the instability of plane-channel flow. The efficiency of the scheme is demonstrated by a grid dependency study of turbulent channel flows by means of direct numerical simulations. The proposed scheme is highly accurate and efficient. At the same level of accuracy, the fourth-order scheme can be ten times faster than the second-order counterpart. This gain in efficiency can be spent on a higher resolution for more accurate solutions at a lower cost.  相似文献   

16.
为研究离散格式对离心泵性能预测精度的影响,本文以自吸式离心泵为计算模型,采用Realizableκ-ε湍流模式进行三维内流场的数值模拟研究,分析了从零流量到最大工作流量下的内部流动和水力性能。建立了考虑内部间隙影响的自吸式离心泵全三维计算模型,分析了动量方程对流项采用一阶差分和二阶差分格式对计算精度的影响,同时分析了压力项的Standard和PRESTO离散格式对计算精度的影响。结果表明,在小流量工况下,采用二阶迎风格式具有较高的计算精度,而在大流量工况下采用一阶迎风格式更为合适。该结果可为准确预测离心泵全工况外特性提供参考依据。  相似文献   

17.
郭子滔  冯仁忠 《计算物理》2019,36(2):141-152
设计一种基于三单元具有六阶精度的修正Hermite-ENO格式(CHENO),求解一维双曲守恒律问题.CHENO格式利用有限体积法进行空间离散,在空间层上,使用ENO格式中的Newton差商法自适应选择模板.在重构半节点处的函数值及其一阶导数值时,利用Taylor展开给出修正Hermite插值使其提高到六阶精度,并设计了间断识别法与相应的处理方法以抑制间断处的虚假振荡;在时间层上采用三阶TVD Runge-Kutta法进行函数值及一阶导数值的推进.其主要优点是在达到高阶精度的同时具有紧致性.数值实验表明对一维双曲守恒律问题的求解达到了理论分析结果,是有效可行的.  相似文献   

18.
An unstructured finite-volume method for direct and large-eddy simulations of scalar transport in complex geometries is presented and investigated. The numerical technique is based on a three-level fully implicit time advancement scheme and central spatial interpolation operators. The scalar variable at cell faces is obtained by a symmetric central interpolation scheme, which is formally first-order accurate, or by further employing a high-order correction term which leads to formal second-order accuracy irrespective of the underlying grid. In this framework, deferred-correction and slope-limiter techniques are introduced in order to avoid numerical instabilities in the resulting algebraic transport equation. The accuracy and robustness of the code are initially evaluated by means of basic numerical experiments where the flow field is assigned a priori. A direct numerical simulation of turbulent scalar transport in a channel flow is finally performed to validate the numerical technique against a numerical dataset established by a spectral method. In spite of the linear character of the scalar transport equation, the computed statistics and spectra of the scalar field are found to be significantly affected by the spectral-properties of interpolation schemes. Although the results show an improved spectral-resolution and greater spatial-accuracy for the high-order operator in the analysis of basic scalar transport problems, the low-order central scheme is found superior for high-fidelity simulations of turbulent scalar transport.  相似文献   

19.
成娟  黄明恪 《计算物理》2003,20(3):273-278
研究如何在非结构网格上进行Navier Stokes(N-S)方程湍流计算.采用格心有限体积方法离散N-S方程.为了适应非结构网格,计算所用的湍流模型特别选用Baldwin Barth(B-B)单方程模型.此模型由一个单一的具有源项的对流扩散方程组成.为了能在非结构网格上求解B B单方程模型,提出一显式有限体积格式,并直接对带源项的格式进行稳定性分析,得到了相应的时间步长限制条件.最后以平板、RAE 2822翼型、多段翼型绕流等数值算例验证了计算方法的有效性.  相似文献   

20.
In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which combines Strang splitting in time with high order WENO (weighted essentially non-oscillatory) reconstruction in space. A key insight in this work is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach to linear hyperbolic equations, can be factored into right and left flux matrices. It is the factoring of the interpolation matrices which makes it possible to apply the WENO methodology in the reconstruction used in the semi-Lagrangian update. The spatial WENO reconstruction developed for this method is conservative and updates point values of the solution. While the third, fifth, seventh and ninth order reconstructions are presented in this paper, the scheme can be extended to arbitrarily high order. WENO reconstruction is able to achieve high order accuracy in smooth parts of the solution while being able to capture sharp interfaces without introducing oscillations. Moreover, the CFL time step restriction of a regular finite difference or finite volume WENO scheme is removed in a semi-Lagrangian framework, allowing for a cheaper and more flexible numerical realization. The quality of the proposed method is demonstrated by applying the approach to basic test problems, such as linear advection and rigid body rotation, and to classical plasma problems, such as Landau damping and the two-stream instability. Even though the method is only second order accurate in time, our numerical results suggest the use of high order reconstruction is advantageous when considering the Vlasov–Poisson system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号