共查询到12条相似文献,搜索用时 57 毫秒
1.
We develop a smoothed aggregation-based algebraic multigrid solver for high-order discontinuous Galerkin discretizations of the Poisson problem. Algebraic multigrid is a popular and effective method for solving the sparse linear systems that arise from discretizing partial differential equations. However, high-order discontinuous Galerkin discretizations have proved challenging for algebraic multigrid. The increasing condition number of the matrix and loss of locality in the matrix stencil as p increases, in addition to the effect of weakly enforced Dirichlet boundary conditions all contribute to the challenging algebraic setting. 相似文献
2.
In this study, a Lagrange multiplier technique is developed to solve problems of coupled mechanics and is applied to the case of a Newtonian fluid coupled to a quasi-static hyperelastic solid. Based on theoretical developments in [57], an additional Lagrange multiplier is used to weakly impose displacement/velocity continuity as well as equal, but opposite, force. Through this approach, both mesh conformity and kinematic variable interpolation may be selected independently within each mechanical body, allowing for the selection of grid size and interpolation most appropriate for the underlying physics. In addition, the transfer of mechanical energy in the coupled system is proven to be conserved. The fidelity of the technique for coupled fluid–solid mechanics is demonstrated through a series of numerical experiments which examine the construction of the Lagrange multiplier space, stability of the scheme, and show optimal convergence rates. The benefits of non-conformity in multi-physics problems is also highlighted. Finally, the method is applied to a simplified elliptical model of the cardiac left ventricle. 相似文献
3.
For the three-dimensional incompressible Navier–Stokes equations, we present a formulation featuring velocity, vorticity and helical density as independent variables. We find the helical density can be observed as a Lagrange multiplier corresponding to the divergence-free constraint on the vorticity variable, similar to the pressure in the case of the incompressibility condition for velocity. As one possible practical application of this new formulation, we consider a time-splitting numerical scheme based on an alternating procedure between vorticity–helical density and velocity–Bernoulli pressure systems of equations. Results of numerical experiments include a comparison with some well-known schemes based on pressure–velocity formulation and illustrate the competitiveness on the new scheme as well as the soundness of the new formulation. 相似文献
4.
With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncertainty as generating a new dimension and the solution as dependent on this dimension. A convergent expansion along the new dimension is then sought in terms of the polynomial chaos system, and the coefficients in this representation are determined through a Galerkin approach. This approach provides an accurate representation even when only a small number of terms are used in the spectral expansion; consequently, saving in computational resource can be realized compared to the Monte Carlo (MC) scheme. Recent development of a finite difference lattice Boltzmann method (FDLBM) that provides a convenient algorithm for setting the boundary condition allows the flow of Newtonian and non-Newtonian fluids, with and without external body forces to be simulated with ease. Also, the inherent compressibility effect in the conventional lattice Boltzmann method, which might produce significant errors in some incompressible flow simulations, is eliminated. As such, the FDLBM together with an efficient UQ method can be used to treat incompressible flows with built in uncertainty, such as blood flow in stenosed arteries. The objective of this paper is to develop a stochastic numerical solver for steady incompressible viscous flows by combining the FDLBM with a SSFEM. Validation against MC solutions of channel/Couette, driven cavity, and sudden expansion flows are carried out. 相似文献
5.
We propose a new semi-implicit lattice numerical method for modeling fluid flow that depends only on local primitive variable information (density, pressure, velocity) and not on relaxed upstream distribution function values. This method has the potential for reducing parallel processor communication and permitting larger time steps than the lattice-Boltzmann method. Several benchmark problems are solved to demonstrate the accuracy of the method. 相似文献
6.
We consider the application of Fictitious Domain approach combined with least squares spectral elements for the numerical solution of fluid dynamic incompressible equations. Fictitious Domain methods allow problems formulated on a complicated shaped domain Ω to be solved on a simpler domain Π containing Ω. Least Squares Spectral Element Method has been used to develop the discrete model, as this scheme combines the generality of finite element methods with the accuracy of spectral methods. Moreover the least squares methods have theoretical and computational advantages in the algorithmic design and implementation. This paper presents the formulation and validation of the Fictitious Domain Least Squares Spectral Element approach for the steady incompressible Navier–Stokes equations. The convergence of the approximated solution is verified solving two-dimensional benchmark problems, demonstrating the predictive capability of the proposed formulation. 相似文献
7.
A low-dissipation method for calculating multi-component gas dynamics flows with variable specific heat ratio that is capable of accurately simulating flows which contain both high- and low-Mach number features is proposed. The technique combines features from the double-flux multi-component model, nonlinear error-controlled WENO, adaptive TVD slope limiters, rotated Riemann solvers, and adaptive mesh refinement to obtain a method that is both robust and accurate. Success of the technique is demonstrated using an extensive series of numerical experiments including premixed deflagrations, Chapman–Jouget detonations, re-shocked Richtmyer–Meshkov instability, shock-wave and hydrogen gas column interaction, and multi-dimensional detonations. This technique is relatively straight-forward to implement using an existing compressible Navier–Stokes solver based on Godunov’s method. 相似文献
8.
We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers–Joseph–Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. 相似文献
9.
This article considers a posteriori error estimation and anisotropic mesh refinement for three-dimensional laminar aerodynamic flow simulations. The optimal order symmetric interior penalty discontinuous Galerkin discretization which has previously been developed for the compressible Navier–Stokes equations in two dimensions is extended to three dimensions. Symmetry boundary conditions are given which allow to discretize and compute symmetric flows on the half model resulting in exactly the same flow solutions as if computed on the full model. Using duality arguments, an error estimation is derived for estimating the discretization error with respect to the aerodynamic force coefficients. Furthermore, residual-based indicators as well as adjoint-based indicators for goal-oriented refinement are derived. These refinement indicators are combined with anisotropy indicators which are particularly suited to the discontinuous Galerkin (DG) discretization. Two different approaches based on either a heuristic criterion or an anisotropic extension of the adjoint-based error estimation are presented. The performance of the proposed discretization, error estimation and adaptive mesh refinement algorithms is demonstrated for 3d aerodynamic flows. 相似文献
10.
In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection–diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33–53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier–Stokes equations using the stream function–vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature. 相似文献
11.
We consider variational multiscale (VMS) methods with h-adaptive technique for the stationary incompressible Navier–Stokes equations. The natural combination of VMS with adaptive strategy retains the best features of both methods and overcomes many of their deficits. A reliable a posteriori projection error estimator is derived, which can be computed by two local Gauss integrations at the element level. Finally, some numerical tests are presented to illustrate the method’s efficiency. 相似文献
12.
This paper presents a parallel implementation of fractional solvers for the incompressible Navier–Stokes equations using an algebraic approach. Under this framework, predictor–corrector and incremental projection schemes are seen as sub-classes of the same class, making apparent its differences and similarities. An additional advantage of this approach is to set a common basis for a parallelization strategy, which can be extended to other split techniques or to compressible flows. 相似文献