首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.  相似文献   

2.
A local domain-free discretization-immersed boundary method (DFD-IBM) is presented in this paper to solve incompressible Navier-Stokes equations in the primitive variable form. Like the conventional immersed boundary method (IBM), the local DFD-IBM solves the governing equations in the whole domain including exterior and interior of the immersed object. The effect of immersed boundary to the surrounding fluids is through the evaluation of velocity at interior and exterior dependent points. To be specific, the velocity at interior dependent points is computed by approximate forms of solution and the velocity at exterior dependent points is set to the wall velocity. As compared to the conventional IBM, the present approach accurately implements the non-slip boundary condition. As a result, there is no flow penetration, which is often appeared in the conventional IBM results. The present approach is validated by its application to simulate incompressible viscous flows around a circular cylinder. The obtained numerical results agree very well with the data in the literature.  相似文献   

3.
谢海琼  曾忠  张良奇 《中国物理 B》2016,25(1):14702-014702
We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop,and the drop deformation in a shear flow, were simulated to validate the present model.  相似文献   

4.
A new finite volume-based numerical algorithm for predicting incompressible and compressible multi-phase flow phenomena is presented. The technique is equally applicable in the subsonic, transonic, and supersonic regimes. The method is formulated on a non-orthogonal coordinate system in collocated primitive variables. Pressure is selected as a dependent variable in preference to density because changes in pressure are significant at all speeds as opposed to variations in density, which become very small at low Mach numbers. The pressure equation is derived from overall mass conservation. The performance of the new method is assessed by solving the following two-dimensional two-phase flow problems: (i) incompressible turbulent bubbly flow in a pipe, (ii) incompressible turbulent air–particle flow in a pipe, (iii) compressible dilute gas–solid flow over a flat plate, and (iv) compressible dusty flow in a converging diverging nozzle. Predictions are shown to be in excellent agreement with published numerical and/or experimental data.  相似文献   

5.
In the present work we developed a structured adaptive mesh refinement (S-AMR) strategy for fluid–structure interaction problems in laminar and turbulent incompressible flows. The computational grid consists of a number of nested grid blocks at different refinement levels. The coarsest grid blocks always cover the entire computational domain, and local refinement is achieved by the bisection of selected blocks in every coordinate direction. The grid topology and data-structure is managed using the Paramesh toolkit. The filtered Navier–Stokes equations for incompressible flow are advanced in time using an explicit second-order projection scheme, where all spatial derivatives are approximated using second-order central differences on a staggered grid. For transitional and turbulent flow regimes the large-eddy simulation (LES) approach is used, where special attention is paid on the discontinuities introduced by the local refinement. For all the fluid–structure interaction problems reported in this study the complete set of equations governing the dynamics of the flow and the structure are simultaneously advanced in time using a predictor–corrector strategy. An embedded-boundary method is utilized to enforce the boundary conditions on a complex moving body which is not aligned with the grid lines. Several examples of increasing complexity are given to demonstrate the robustness and accuracy of the proposed formulation.  相似文献   

6.
In this paper, a method to stabilize simulations and suppress the pressure oscillation in Moving Particle Semi-implicit method for an incompressible fluid is presented. To make the pressure smooth in terms of both of space and time, a new representation of the incompressible condition is proposed. The incompressible condition consists of two parts: the Divergence-Free condition and the Particle Number Density condition. The Divergence-Free condition has the effect of making the pressure smooth in terms of both space and time. The Particle Number Density condition is necessary to keep the fluid volume constant. In this work, the Quasi-Compressibility is also introduced for stabilization. A dam break is simulated more stably and the space distribution and the time variation of pressure are evaluated more smoothly than the traditional method. Moreover, surface particles are detected more accurately. Nevertheless the proposed method is computationally cheaper. Some simulations such as a Fluid–Structure Interaction are supposed to be more accurate using this method.  相似文献   

7.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

8.
In this work, the local grid refinement procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating unsteady viscous incompressible flows with complex immersed boundaries. A finite-volume formulation based on globally second-order accurate central-difference schemes is adopted here in conjunction with a two-step fractional-step procedure. The key aspects that needed to be considered in developing such a nested grid solver are proper imposition of interface conditions on the nested-block boundaries, and accurate discretization of the governing equations in cells that are with block-interface as a control-surface. The interpolation procedure adopted in the study allows systematic development of a discretization scheme that preserves global second-order spatial accuracy of the underlying solver, and as a result high efficiency/accuracy nested grid discretization method is developed. Herein the proposed nested grid method has been widely tested through effective simulation of four different classes of unsteady incompressible viscous flows, thereby demonstrating its performance in the solution of various complex flow–structure interactions. The numerical examples include a lid-driven cavity flow and Pearson vortex problems, flow past a circular cylinder symmetrically installed in a channel, flow past an elliptic cylinder at an angle of attack, and flow past two tandem circular cylinders of unequal diameters. For the numerical simulations of flows past bluff bodies an immersed boundary (IB) method has been implemented in which the solid object is represented by a distributed body force in the Navier–Stokes equations. The main advantages of the implemented immersed boundary method are that the simulations could be performed on a regular Cartesian grid and applied to multiple nested-block (Cartesian) structured grids without any difficulty. Through the numerical experiments the strength of the solver in effectively/accurately simulating various complex flows past different forms of immersed boundaries is extensively demonstrated, in which the nested Cartesian grid method was suitably combined together with the fractional-step algorithm to speed up the solution procedure.  相似文献   

9.
In this paper, a new fluid–structure interaction immersed computational methodology, based upon the original Immersed Boundary Method (IBM) [1] is outlined with the final aim of modelling cardiovascular phenomena, specifically, heart valve related problems. The principal characteristic of such immersed techniques is the representation of any deformable or rigid body immersed within an incompressible viscous flow field as a momentum forcing source in the Navier–Stokes equations. A number of shortcomings within the immersed formulation still require further investigation and improvement, including the excessive numerical diffusion caused by the interpolation/spreading process, the need to include realistic viscoelastic composite constitutive models describing more accurately the nature of cardiovascular tissues and also the need to capture more effectively stresses developed at the fluid–structure interface. By following the same philosophy as the original IBM, a more sophisticated formulation is derived in this paper, the “Immersed Structural Potential Method (ISPM)”. The method introduced presents an alternative approach to compute the equivalent fluid–structure interaction forces at the fluid mesh, accounts for a sophisticated viscoelastic fibre-reinforced constitutive model to better describe the mechanics of cardiovascular tissues and utilises a novel time-integration methodology for the computation of the deformation gradient tensor which ensures compliance with the incompressibility constraint. A series of numerical examples will be presented in order to demonstrate the robustness and applicability of this new methodology.  相似文献   

10.
The recently proposed boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM) [14] is improved in this work to simulate three-dimensional incompressible viscous flows. In the conventional IB-LBM, the restoring force is pre-calculated, and the non-slip boundary condition is not enforced as compared to body-fitted solvers. As a result, there is a flow penetration to the solid boundary. This drawback was removed by the new version of IB-LBM [14], in which the restoring force is considered as unknown and is determined in such a way that the non-slip boundary condition is enforced. Since Eulerian points are also defined inside the solid boundary, the computational domain is usually regular and the Cartesian mesh is used. On the other hand, to well capture the boundary layer and in the meantime, to save the computational effort, we often use non-uniform mesh in IB-LBM applications. In our previous two-dimensional simulations [14], the Taylor series expansion and least squares-based lattice Boltzmann method (TLLBM) was used on the non-uniform Cartesian mesh to get the flow field. The final expression of TLLBM is an algebraic formulation with some weighting coefficients. These coefficients could be computed in advance and stored for the following computations. However, this way may become impractical for 3D cases as the memory requirement often exceeds the machine capacity. The other way is to calculate the coefficients at every time step. As a result, extra time is consumed significantly. To overcome this drawback, in this study, we propose a more efficient approach to solve lattice Boltzmann equation on the non-uniform Cartesian mesh. As compared to TLLBM, the proposed approach needs much less computational time and virtual storage. Its good accuracy and efficiency are well demonstrated by its application to simulate the 3D lid-driven cubic cavity flow. To valid the combination of proposed approach with the new version of IBM [14] for 3D flows with curved boundaries, the flows over a sphere and torus are simulated. The obtained numerical results compare very well with available data in the literature.  相似文献   

11.
The research of the motion and deformation of the RBCs is important to reveal the mechanism of blood diseases. A numerical method has been developed with level set formulation for elastic membrane immersed in incompressible fluid. The numerical model satisfies mass and energy conservation without the leaking problems in classical Immersed Boundary Method(IBM), at the same time, computing grid we used can be much smaller than the general literatures. The motion and deformation of a red blood cell(including pathological normal status) in microvascular flow are simulated. It is found that the Reynolds number and membrane's stiffness play an important role in the transmutation and oscillation of the elastic membrane. The normal biconcave shape of the RBC is propitious to create high deformation than other pathological shapes. With reduced viscosity of the interior fluid both the velocity of the blood and the deformability of the cell reduced. With increased viscosity of the plasma both the velocity of the blood and the deformability of the cell reduced. The tank treading of the RBC membrane is observed at low enough viscosity contrast in shear flow. The tank tread fixed inclination angle of the cell depends on the shear ratio and viscosity contrast, which can be compared with the experimental observation well.  相似文献   

12.
A method for reducing the spurious pressure oscillations observed when simulating moving boundary flow problems with sharp-interface immersed boundary methods (IBMs) is proposed. By first identifying the primary cause of these oscillations to be the violation of the geometric conservation law near the immersed boundary, we adopt a cut-cell based approach to strictly enforce geometric conservation. In order to limit the complexity associated with the cut-cell method, the cut-cell based discretization is limited only to the pressure Poisson and velocity correction equations in the fractional-step method and the small-cell problem tackled by introducing a virtual cell-merging technique. The method is shown to retain all the desirable properties of the original finite-difference based IBM while at the same time, reducing pressure oscillations for moving boundaries by roughly an order of magnitude.  相似文献   

13.
研究柔性水翼在不可压缩流体中的水动力特性,对于船舵和减摇鳍等海洋结构物的设计和性能优化具有重要意义.本文将自主开发的径向基函数虚拟网格法求解器扩展到模拟绕单个或多个柔性水翼的不可压缩流动问题.数值模型基于虚拟网格有限差分法考虑浸入边界对流场的影响,引入紧支径向基函数(compact supported radial basis function,CSRBF)以物面Lagrangian质点追踪复杂的柔性动边界.基于该方法,首先模拟了均匀流中主动拍动的柔性水翼,升阻力系数良好的网格收敛性结果验证了本文方法的精度和可靠性.并研究了柔性水翼在不同振荡频率下的水动力特性,阐述了柔性水翼的推力生成机制.然后模拟了绕阵列布置柔性水翼的流动现象,研究了不同间距和不同振荡频率下水翼表面的升阻力系数变化规律和尾涡特性,观察到紧密布置的柔性水翼在高频振荡下推力系数存在显著的放大效应,同时推力为零时的临界频率提前.  相似文献   

14.
In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model pro- posed in [Europhys. Lctt., 2010, 90: 54003] so that it is suitable also for incompressible flows. To decrease tile artificial oscillations, the convection term is discretized by the flux linfiter scheme with splitting technique. A new model is validated by some well-known benchmark tests, including Rie- mann problem and Couette flow, and satisfying agreements are obtained between the sinmlation results and ana.lytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with the physical analysis.  相似文献   

15.
粘性不可压流体流动问题用直角坐标网格的贴体解法   总被引:1,自引:0,他引:1  
汪建兵  康宁 《计算物理》2004,21(4):290-298
研究一种新的全贴体的求解粘性不可压流体流动问题的非结构化直角坐标网格方法.该方法在于利用直角坐标网格但通过在边界附近保留不规则控制体,使得算法是完全贴体的.这有别于目前流行的各种非结构化直角坐标网格方法.通过对两个典型流动问题的计算对该数值方法进行验证.对比结果表明,本方法计算的结果与精确解和STAR-CD的结果在一定Re数和网格数时是很接近的,可以满足一定的精度要求,说明该数值计算方法是可行的.还对二维钝头体周围的流场进行了计算,计算的流场与STAR-CD的结果相当吻和,说明该算法还可计算较复杂的流动现象.  相似文献   

16.
In this paper, we develop a Fictitious Domain, parallel numerical method for the Direct Numerical Simulation of the flow of rigid particles in an incompressible viscous Newtonian fluid. A Simultaneous Directions Implicit algorithm is employed which gives the model a high level of parallelization. The projection of the fluid velocity onto rigid motion on the particles is based on a fast computational technique which relies on the conservation of linear and angular momenta. Numerical results are presented which confirm the ability of the proposed method to simulate the sedimentation of one and many particles; the parallel efficiency of the algorithm is also assessed.  相似文献   

17.
An improved penalty immersed boundary (pIB) method has been proposed for simulation of fluid–flexible body interaction problems. In the proposed method, the fluid motion is defined on the Eulerian domain, while the solid motion is described by the Lagrangian variables. To account for the interaction, the flexible body is assumed to be composed of two parts: massive material points and massless material points, which are assumed to be linked closely by a stiff spring with damping. The massive material points are subjected to the elastic force of solid deformation but do not interact with the fluid directly, while the massless material points interact with the fluid by moving with the local fluid velocity. The flow solver and the solid solver are coupled in this framework and are developed separately by different methods. The fractional step method is adopted to solve the incompressible fluid motion on a staggered Cartesian grid, while the finite element method is developed to simulate the solid motion using an unstructured triangular mesh. The interaction force is just the restoring force of the stiff spring with damping, and is spread from the Lagrangian coordinates to the Eulerian grids by a smoothed approximation of the Dirac delta function. In the numerical simulations, we first validate the solid solver by using a vibrating circular ring in vacuum, and a second-order spatial accuracy is observed. Then both two- and three-dimensional simulations of fluid–flexible body interaction are carried out, including a circular disk in a linear shear flow, an elastic circular disk moving through a constricted channel, a spherical capsule in a linear shear flow, and a windsock in a uniform flow. The spatial accuracy is shown to be between first-order and second-order for both the fluid velocities and the solid positions. Comparisons between the numerical results and the theoretical solutions are also presented.  相似文献   

18.
苏进  欧阳洁  王晓东 《物理学报》2012,61(10):104702-104702
基于格子Boltzmann方法,提出了求解耦合不可压缩流场输运方程的一种改进数值方法. 该方法使用格子Boltzmann方法求解流场方程,并根据流场格子模型的密度分布函数构建了输运方程的二阶离散格式. 通过二维平板通道流场输运系统验证了该方法的有效性.数值结果表明,该方法可以有效地减少计算过程中出现的非物理耗散, 并克服了传统模型所需巨大存储量的缺点.  相似文献   

19.
The continuous adjoint method for the computation of sensitivity derivatives in aerodynamic optimization problems of steady incompressible flows, modeled through the kε turbulence model with wall functions, is presented. The proposed formulation leads to the adjoint equations along with their boundary conditions by introducing the adjoint to the friction velocity. Based on the latter, an adjoint law of the wall that bridges the gap between the solid wall and the first grid node off the wall is proposed and used during the solution of the system of adjoint (to both the mean flow and turbulence) equations. Any high Reynolds turbulence model, other than the kε one used in this paper, could also profit from the proposed adjoint wall function technique. In the examined duct flow problems, where the total pressure loss due to viscous effects is used as objective function, emphasis is laid on the accuracy of the computed sensitivity derivatives, rather than the optimization itself. The latter might rely on any descent method, once the objective function gradient has accurately been computed.  相似文献   

20.
Darryl D. Holm   《Physics letters. A》2009,373(47):4354-4359
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号