首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
A new numerical method, which is based on the coupling between variational multiscale method and meshfree methods, is developed for 2D Burgers’ equation with various values of Re. The proposed method takes full advantage of meshfree methods, therefore, no mesh generation and mesh recreation are involved. Meanwhile, compared with the variational multiscale finite element method, a strong assumption, that is, the fine scale vanishes identically over the element boundaries although non-zero within the elements, is not needed. Subsequently two problems which have an available analytical solution of their own are solved to analyze the convergence behaviour of the proposed method. Finally a 2D Burgers’ equation having large Re is solved and the results have also been compared with the ones computed by two other methods. The numerical results show that the proposed method can indeed obtain accurate numerical results for 2D Burgers’ equation having large Re, which does not refer to the choice of a proper stabilization parameter.  相似文献   

2.
基于小波分析理论和RKPM再生核函数研究无网格方法SPH中多尺度诊断工具,多尺度再生核函数使得数值计算在不同尺度上的响应分离,并通过动态伸缩窗函数给出计算域不同位置的时频特性,实现在无网格体系下构造网格计算方法的“自适应网格”,从而达到对不同流场位置多分辨率分析的目的.利用多尺度诊断工具中的小波分解算法给出SPH核函数在频域内能量残差估计,发展一种核函数光滑长度最优选取准则.最后,基于可压缩流场激波稀疏波共存的现象,针对传统的光滑长度自适应的缺陷,构造一种避免数值计算“拖尾”现象的自适应准则.  相似文献   

3.
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media. A velocity–strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.  相似文献   

4.
Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L(∞) and L(2) errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems.  相似文献   

5.
针对水陆两栖飞机静水面高速滑行过程的运动响应大、流场强非线性等问题,提出了一种基于传统动网格技术的"状态预估——精确计算"的数值模拟方法:通过求解Reynolds平均N-S方程结合运动方程来模拟飞机静水面滑行时的流场特征和运动特性,数值模拟方法为隐式有限体积法,湍流模型采用k-ω(SST Menter)结合壁函数进行处理,自由液面捕捉采用VOF方法;数值计算时,首先采用粗网格对简化后的飞机在不同航速下的姿态和升沉进行快速预估,再将飞机置于预估状态下进行精确网格划分,最后进行精确数值计算分析.为了验证数值模拟结果的正确性,在物理水池中进行了静水拖曳试验,将数值计算结果与试验结果进行对比分析可得:数值计算与水池试验的流场特征吻合,且阻力、姿态和升沉的计算精度达到90%,验证了数值模拟方法的可行性.   相似文献   

6.
The use of finite difference schemes to compute the scattering of acoustic waves by surfaces made up of different materials with sharp surface discontinuities at the joints would, invariably, result in the generations of spurious reflected waves of numerical origin. Spurious scattered waves are produced even if a high-order scheme capable of resolving and supporting the propagation of the incident wave is used. This problem is of practical importance in jet engine duct acoustic computation. In this work, the basic reason for the generation of spurious numerical waves is first examined. It is known that when the governing partial differential equations of acoustics are discretized, one should only use the long waves of the computational scheme to represent or simulate the physical waves. The short waves of the computational scheme have entirely different propagation characteristics. They are the spurious numerical waves. A method by which high wave number components (short waves) in the wave scattering process is intentionally removed so as to minimize the scattering of spurious numerical waves is proposed. This method is implemented in several examples from computational aeroacoustics to illustrate its effectiveness, accuracy and efficiency. This method is also employed to compute the scattering of acoustic waves by scatterers, such as rigid wall acoustic liner splices, with width smaller than the computational mesh size. Good results are obtained when comparing with computed results using much smaller mesh size. The method is further extended for applications to computations of acoustic wave reflection and scattering by very small surface inhomogeneities with simple geometries.  相似文献   

7.
Three-dimensional numerical modeling is performed for development of surface waves under the action of wind. The model is based on equations for potential motion of a fluid with a free surface, which are transformed to a curvilinear system of coordinates where the height is counted from the moving surface. The problem is solved in the doubly periodic domain by the Fourier method with calculation of nonlinearity using a high-resolution mesh (Fourier transform method). The three-dimensional elliptic equation for the velocity potential is solved as the Poisson equation by the marching method with iterations. The energy input from wind and the wave energy dissipation are introduced on the basis of the earlier developed and verified algorithms. The long-period evolution of the three-dimensional flow is demonstrated with the wave surface spectra and energy input and output spectra. The results are compared to the experimental data.  相似文献   

8.
无网格方法中粒子分布与自适应研究   总被引:2,自引:0,他引:2  
倪国喜  王瑞利  林忠 《计算物理》2006,23(4):419-424
给出了一种区域粒子的Voronoi面积均匀的划分方法,先利用边界点得到边界粒子,再得到内部粒子,利用这种方法可以得到一般区域上粒子的均匀分布.同时,给出了计算过程中按流场的物理量对粒子进行自适应分布的方法.并给出了几个算例.  相似文献   

9.
马智博 《计算物理》2017,34(3):261-272
无网格方法根据分布于近邻空间各个方向的微元体物理信息构造离散方程,显著降低了空间导数计算对微元体本身及微元体之间拓扑结构的条件限制,极大提高了拉氏方法的大变形计算能力.由于不能利用微元体的完备几何信息,不容易构造符合物理的无网格算法,对那些物理参数存在间断的模型对象,难以获得稳定和准确的计算结果.本文基于对物理规律及数值模拟发展趋势的分析,提出符合物理且具有强普适性的无网格方法体系.基于该方法的一维算例表明,即使物理参数存在强烈间断,数值结果也能很好地逼近问题的真解.  相似文献   

10.
商德江  钱治文  何元安  肖妍 《物理学报》2018,67(8):84301-084301
针对浅海信道下弹性结构声辐射预报尚无高效可靠的研究方法,提出了一种浅海信道下弹性结构声辐射快速预报的联合波叠加法.该方法结合了浅海信道传输函数、多物理场耦合数值计算法和波叠加法理论,运用该方法可对浅海信道下弹性结构辐射声场进行快速预报.经数值法和解析解法验证后,从信道下辐射源、环境影响和辐射声场测量的角度研究分析了浅海信道下弹性圆柱壳的声辐射特性,阐释了进行浅海信道下结构声辐射研究的必要性.研究结果表明,仅在低频浅海信道下弹性结构可近似等效为点源,信道上下边界对声场产生显著的耦合影响,高频段的空间声场指向性分布尤为明显,垂直线列阵进行信道下结构辐射声功率测量时,测量结果受到信道环境边界和潜深的影响较大.  相似文献   

11.
Modelling and understanding the effect of elastic wave propagation along a curved free surface has been one of the important issues in seismic exploration[1—3], earth seis-mology[4], and non-destructive ultrasonic detection[5]. Several approaches have beenproposed for simulating wave propagation in heterogeneous media with a topographic stress-release boundary. These include finite-element methods (FEM), boundary element methods (BEM), finite-difference methods (FDM), pseudo-spectral metho…  相似文献   

12.
The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics.  相似文献   

13.
Computational simulation of solids has experienced a rapid development since the formulation of the finite element method. However a number of problems cannot be properly solved by using the finite element method because a severe mesh distortion in computations of Lagrangian scheme may arise for very large displacements, high speed impact, fragmentation, particulate solids, fluid-structure interaction, leading to lack of consistency between the numerical and the physical problem. The discretization of the problem domain with nodal points without any mesh connectivity would be useful to overcome this difficulty. Moreover the discrete nature of continuum matter—usually observed at the microscale—allows to adopt such a kind of discretization that is natural for granular materials and enables us to model very large deformations, handle damage—such as fracture, crushing, fragmentation, clustering—thanks to the variable interaction between particles.In the context of meshless methods, smoothed particle hydrodynamics (SPH) is a meshfree particle method based on Lagrangian formulation that has been widely applied to different engineering fields. In the present paper a unified computational potential-based particle method for the mechanical simulation of continuum and granular materials under dynamic condition, is proposed and framed in the SPH-like approaches. The particleparticle and particle-boundary interaction is modelled through force functionals related to the nature of the material being analyzed (solid, granular,...); large geometrical changes of the mechanical system, such as fracture, clustering, granular flow can be easily modelled. Some examples are finally proposed and discussed to underline the potentiality of the approach.  相似文献   

14.
苏铁熊  马理强  刘谋斌  常建忠 《物理学报》2013,62(6):64702-064702
采用改进的光滑粒子动力学(SPH)方法对液滴冲击固壁面问题进行了数值模拟. 为了提高传统SPH方法的计算精度和数值稳定性, 在传统的SPH方法的基础上对粒子方法中的密度和核梯度进行了修正, 采用了考虑黎曼解法的SPH流体控制方程, 构造了一种新型的粒子间相互作用力(IIF)模型来模拟表面张力的影响. 应用改进的SPH方法对液滴冲击固壁面问题进行了数值模拟. 计算结果表明:新型的IIF 模型能够较好地模拟表面张力的影响, 改进的SPH方法能够精细地描述液滴与固壁面相互作用过程中液滴的内部压力场演变和自由面形态变化, 液滴的铺展因子随初始韦伯数的增大而增大, 数值模拟结果与实验得到的结果基本一致. 关键词: 液滴 固壁面 光滑粒子动力学 表面张力  相似文献   

15.
 是否考虑康普顿散射光子的输运,用何种材料模型描述熔化、汽化和应变率效应,选用怎样的迎光自由面差分格式以及空间步长大小等因素,对X光热激波数值模拟结果都会产生重要的影响。依据热激波一维数值模拟结果,对上述各种因素的影响进行了定量分析。计算表明:在X光能谱比较软和辐照量较大时,物态方程、迎光自由面差分格式和空间步长大小对热激波的计算结果都会造成重要影响;在X光能增变硬时,康普顿散射的影响增大;在低压时,本构关系和屈服强度基本上控制了热激波的衰减规律。  相似文献   

16.
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh resolution down to the finest scales and multiscale methods capable of capturing the large scale components of the solution on macroscopic meshes are needed. Recently, the finite element heterogeneous multiscale method (FE-HMM) has been proposed for such problems, based on a macroscopic solver with effective data recovered from the solution of micro problems on sampling domains at quadrature points of a macroscopic mesh. Departing from the approach used in the FE-HMM, we show that interpolation techniques based on the reduced basis methodology (an offline-online strategy) allow one to design an efficient numerical method relying only on a small number of accurately computed micro solutions. This new method, called the reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) is significantly more efficient than the FE-HMM for high order macroscopic discretizations and for three-dimensional problems, when the repeated computation of micro problems over the whole computational domain is expensive. A priori error estimates of the RB-FE-HMM are derived. Numerical computations for two and three dimensional problems illustrate the applicability and efficiency of the numerical method.  相似文献   

17.
Jing Yue 《中国物理 B》2023,32(1):10201-010201
We present an efficient deep learning method called coupled deep neural networks (CDNNs) for coupling of the Stokes and Darcy-Forchheimer problems. Our method compiles the interface conditions of the coupled problems into the networks properly and can be served as an efficient alternative to the complex coupled problems. To impose energy conservation constraints, the CDNNs utilize simple fully connected layers and a custom loss function to perform the model training process as well as the physical property of the exact solution. The approach can be beneficial for the following reasons: Firstly, we sample randomly and only input spatial coordinates without being restricted by the nature of samples. Secondly, our method is meshfree, which makes it more efficient than the traditional methods. Finally, the method is parallel and can solve multiple variables independently at the same time. We present the theoretical results to guarantee the convergence of the loss function and the convergence of the neural networks to the exact solution. Some numerical experiments are performed and discussed to demonstrate performance of the proposed method.  相似文献   

18.
径向基函数插值方法在动网格技术中的应用   总被引:3,自引:0,他引:3  
林言中  陈兵  徐旭 《计算物理》2012,29(2):191-197
分析用于非结构网格的弹簧比拟和用于结构网格的无限插值动态网格方法在实际应用中的优缺点,提出无需网格连接关系的基于径向基函数(radial basis functions,RBF)插值的动网格技术并编制相应的网格运动计算程序.以二维菱形翼的旋转运动及三维菱形翼的柔性变形为例,分析不同基函数和紧支半径的选取对网格质量及计算效率的影响,并通过与弹簧比拟方法的对比验证了RBF方法的有效性.结果表明:RBF方法数据结构简单,计算效率高,适应大变形能力强,可以有效地实现计算流体力学中的网格运动问题.  相似文献   

19.
This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud–shock interaction problem.  相似文献   

20.
The finite element method has been applied to the analysis of acoustic problems with several natural frequencies and mode shapes. First, a recovery-based error estimation is performed following the well-known procedures of structural problems. Then, an h -adaptive refinement strategy is proposed that leads to a finite element mesh with the minimum number of elements and with a specified error for each of the natural frequencies included in the analysis. The procedure provides a useful numerical tool, since the computational requirements are reduced. In addition, results obtained by means of the minimum element size procedure are shown for comparison purposes. The similarity of the meshes given by the two methods is justified on the basis of the equations that lead to the element size of the mesh. The procedure has been applied to some numerical examples to illustrate its validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号