首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
桑为民  李凤蔚 《计算物理》2004,21(4):345-351
对于粘性绕流的数值模拟,在自适应直角网格基础上,结合三角形非结构网格和结构化网格,利用其各自的优势和特点,提出一种生成混合杂交网格的思路和方法.在物面附近生成适合粘性流计算的大长宽比结构化网格,在远场分布自适应直角网格,快速离散计算空间.对于复杂的多体问题,采用三角形网格来连接各体网格,并运用网格合并的方法,保证各网格之间的光滑过渡与连接,提高网格质量.针对一些二维、三维外形的绕流问题,在上述网格基础上,采用B-L代数湍流模型和中心有限体积法,完成Navier-Stokes和Euler方程数值模拟的对比计算,结果表明网格生成和流场计算是正确的.  相似文献   

2.
An efficient Green's function solution for acoustic initial value problems in homogeneous media with power law absorption is derived. The solution is based on the homogeneous wave equation for lossless media with two additional terms. These terms are dependent on the fractional Laplacian and separately account for power law absorption and dispersion. Given initial conditions for the pressure and its temporal derivative, the solution allows the pressure field for any time t>0 to be calculated in a single step using the Fourier transform and an exact k-space time propagator. For regularly spaced Cartesian grids, the former can be computed efficiently using the fast Fourier transform. Because no time stepping is required, the solution facilitates the efficient computation of the pressure field in one, two, or three dimensions without stability constraints. Several computational aspects of the solution are discussed, including the effect of using a truncated Fourier series to represent discrete initial conditions, the use of smoothing, and the properties of the encapsulated absorption and dispersion.  相似文献   

3.
尤国钊  袁革胤 《计算物理》1994,11(3):257-261
镶嵌网格法是自适应网格法的一种。本文提出的镶嵌网格法以Ni的二阶有限体积法为基础,用密度一阶差分作为察觉激波的特征参数,给出网格局部加密(一分为四)的原则,构造了较节省存贮的数据结构。用于平面斜激波固壁反射的计算结果表明:镶嵌网格对激波的分辨能力不仅比粗网格强得多,而且也稍好于细网格;计算时间仅为细网格的一半稍多些.可见,此方法对解决计算效率和精度的矛盾是有利的。  相似文献   

4.
Accuracy of equivalent circuit models of periodic grids is investigated in amplitude and phase in the visible region. The grids studied here are one-dimensional (1D) and two-dimensional (2D) inductive thin metal meshes. They are located in free space and are illuminated by a plane wave under normal incidence. The range of validity and the accuracy of conventional circuit models are defined by comparison with rigorous results obtained with the Finite-Difference Time-Domain (FDTD) method. In particular, it is shown that electrical models of 1D grids are accurate, whereas equivalent circuits of 2D grids should be used very cautiously. Then, a new formulation is proposed to overcome this major drawback. In the non-diffraction region, the agreement between our model and the FDTD results is within 2% for the power reflectivity and 1° for the phase over a very wide range of strip widths.  相似文献   

5.
This paper presents a new computational framework for the simulation of solid mechanics on general overlapping grids with adaptive mesh refinement (AMR). The approach, described here for time-dependent linear elasticity in two and three space dimensions, is motivated by considerations of accuracy, efficiency and flexibility. We consider two approaches for the numerical solution of the equations of linear elasticity on overlapping grids. In the first approach we solve the governing equations numerically as a second-order system (SOS) using a conservative finite-difference approximation. The second approach considers the equations written as a first-order system (FOS) and approximates them using a second-order characteristic-based (Godunov) finite-volume method. A principal aim of the paper is to present the first careful assessment of the accuracy and stability of these two representative schemes for the equations of linear elasticity on overlapping grids. This is done by first performing a stability analysis of analogous schemes for the first-order and second-order scalar wave equations on an overlapping grid. The analysis shows that non-dissipative approximations can have unstable modes with growth rates proportional to the inverse of the mesh spacing. This new result, which is relevant for the numerical solution of any type of wave propagation problem on overlapping grids, dictates the form of dissipation that is needed to stabilize the scheme. Numerical experiments show that the addition of the indicated form of dissipation and/or a separate filter step can be used to stabilize the SOS scheme. They also demonstrate that the upwinding inherent in the Godunov scheme, which provides dissipation of the appropriate form, stabilizes the FOS scheme. We then verify and compare the accuracy of the two schemes using the method of analytic solutions and using problems with known solutions. These latter problems provide useful benchmark solutions for time dependent elasticity. We also consider two problems in which exact solutions are not available, and use a posterior error estimates to assess the accuracy of the schemes. One of these two problems is additionally employed to demonstrate the use of dynamic AMR and its effectiveness for resolving elastic “shock” waves. Finally, results are presented that compare the computational performance of the two schemes. These demonstrate the speed and memory efficiency achieved by the use of structured overlapping grids and optimizations for Cartesian grids.  相似文献   

6.
A new discrete velocity scheme for solving the Boltzmann equation is described. Directly solving the Boltzmann equation is computationally expensive because, in addition to working in physical space, the nonlinear collision integral must also be evaluated in a velocity space. Collisions between each point in velocity space with all other points in velocity space must be considered in order to compute the collision integral most accurately, but this is expensive. The computational costs in the present method are reduced by randomly sampling a set of collision partners for each point in velocity space analogous to the Direct Simulation Monte Carlo (DSMC) method. The present method has been applied to a traveling 1D shock wave. The jump conditions across the shock wave match the Rankine–Hugoniot jump conditions. The internal shock wave structure was compared to DSMC solutions, and good agreement was found for Mach numbers ranging from 1.2 to 10. Since a coarse velocity discretization is required for efficient calculation, the effects of different velocity grid resolutions are examined. Additionally, the new scheme’s performance is compared to DSMC and it was found that upstream of the shock wave the new scheme performed nearly an order of magnitude faster than DSMC for the same upstream noise. The noise levels are comparable for the same computational effort downstream of the shock wave.  相似文献   

7.
An efficient second-order accurate finite-volume method is developed for a solution of the incompressible Navier–Stokes equations on complex multi-block structured curvilinear grids. Unlike in the finite-volume or finite-difference-based alternating-direction-implicit (ADI) methods, where factorization of the coordinate transformed governing equations is performed along generalized coordinate directions, in the proposed method, the discretized Cartesian form Navier–Stokes equations are factored along curvilinear grid lines. The new ADI finite-volume method is also extended for simulations on multi-block structured curvilinear grids with which complex geometries can be efficiently resolved. The numerical method is first developed for an unsteady convection–diffusion equation, then is extended for the incompressible Navier–Stokes equations. The order of accuracy and stability characteristics of the present method are analyzed in simulations of an unsteady convection–diffusion problem, decaying vortices, flow in a lid-driven cavity, flow over a circular cylinder, and turbulent flow through a planar channel. Numerical solutions predicted by the proposed ADI finite-volume method are found to be in good agreement with experimental and other numerical data, while the solutions are obtained at much lower computational cost than those required by other iterative methods without factorization. For a simulation on a grid with O(105) cells, the computational time required by the present ADI-based method for a solution of momentum equations is found to be less than 20% of that required by a method employing a biconjugate-gradient-stabilized scheme.  相似文献   

8.
The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian–Eulerian (ALE) form of the Navier–Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.  相似文献   

9.
We present a method to solve the three-dimensional (3D) radiative transfer equation for astrophysical applications using adaptive photon transport grids. Contrary to earlier treatments, they are calculated for each frequency separately. Generated minimizing the first-order discretization error in the scattered radiation intensity, they provide global error control for solutions of radiative transfer problems on the grid. We discuss minimization of the grid point number in regions where the optical depth becomes large and show that the method allows for treating applications with optical depth of any value using the concept of penetration depth. The proposed grid generation algorithm is easy to implement, allows pre-calculation of the grids and storage in integer arrays, making a fast solution of the 3D radiative transfer equation possible. The grid generation algorithm is suitable for optimization in cases where simple radiation source distributions are given. Besides discussing application to simple density distribution commonly occurring in astrophysical objects, we illustrate the capabilities of the method by generating grids for an accretion disk around a young star.  相似文献   

10.
Lattice Boltmzann Methods (LBM) have been proved to be very effective methods for computational aeroacoustics (CAA), which have been used to capture the dynamics of weak acoustic fluctuations. In this paper, we propose a strategy to reduce the dispersive and disspative errors of the two-dimensional (2D) multi-relaxation-time lattice Boltzmann method (MRT-LBM). By presenting an effective algorithm, we obtain a uniform form of the linearized Navier–Stokes equations corresponding to the MRT-LBM in wave-number space. Using the matrix perturbation theory and the equivalent modified equation approach for finite difference methods, we propose a class of minimization problems to optimize the free-parameters in the MRT-LBM. We obtain this way a dispersion-relation-preserving LBM (DRP-LBM) to circumvent the minimized dispersion error of the MRT-LBM. The dissipation relation precision is also improved. And the stability of the MRT-LBM with the small bulk viscosity is guaranteed. Von Neuman analysis of the linearized MRT-LBM is performed to validate the optimized dispersion/dissipation relations considering monochromatic wave solutions. Meanwhile, dispersion and dissipation errors of the optimized MRT-LBM are quantitatively compared with the original MRT-LBM. Finally, some numerical simulations are carried out to assess the new optimized MRT-LBM schemes.  相似文献   

11.
This study examines the use of stationary Cartesian mesh for steady and unsteady flow computations. The surface boundary conditions are imposed by reflected points. A cloud of nodes in the vicinity of the surface is used to get a weighted average of the flow properties via a gridless least-squares technique. If the displacement of the moving surface from the original position is typically small, a small-perturbation boundary condition method can be used. To ensure computational efficiency, multigrid solution is made via a framework of embedded grids for local grid refinement. Computations of airfoil wing and wing-body test cases show the practical usefulness of the embedded Cartesian grids with the small-perturbation boundary conditions approach.  相似文献   

12.
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.  相似文献   

13.
This paper concerns the development of a new Cartesian grid/immersed boundary (IB) method for the computation of incompressible viscous flows in two-dimensional irregular geometries. In IB methods, the computational grid is not aligned with the irregular boundary, and of upmost importance for accuracy and stability is the discretization in cells which are cut by the boundary, the so-called “cut-cells”. In this paper, we present a new IB method, called the LS-STAG method, which is based on the MAC method for staggered Cartesian grids and where the irregular boundary is sharply represented by its level-set function. This implicit representation of the immersed boundary enables us to calculate efficiently the geometry parameters of the cut-cells. We have achieved a novel discretization of the fluxes in the cut-cells by enforcing the strict conservation of total mass, momentum and kinetic energy at the discrete level. Our discretization in the cut-cells is consistent with the MAC discretization used in Cartesian fluid cells, and has the ability to preserve the five-point Cartesian structure of the stencil, resulting in a highly computationally efficient method. The accuracy and robustness of our method is assessed on canonical flows at low to moderate Reynolds number: Taylor–Couette flow, flows past a circular cylinder, including the case where the cylinder has forced oscillatory rotations. Finally, we will extend the LS-STAG method to the handling of moving immersed boundaries and present some results for the transversely oscillating cylinder flow in a free-stream.  相似文献   

14.
The present work details the Elastoplast (this name is a translation from the French “sparadrap”, a concept first applied by Yves Morchoisne for Spectral methods [1]) Discontinuous Galerkin (EDG) method to solve the compressible Navier–Stokes equations. This method was first presented in 2009 at the ICOSAHOM congress with some Cartesian grid applications. We focus here on unstructured grid applications for which the EDG method seems very attractive. As in the Recovery method presented by van Leer and Nomura in 2005 for diffusion, jumps across element boundaries are locally eliminated by recovering the solution on an overlapping cell. In the case of Recovery, this cell is the union of the two neighboring cells and the Galerkin basis is twice as large as the basis used for one element. In our proposed method the solution is rebuilt through an L2 projection of the discontinuous interface solution on a small rectangular overlapping interface element, named Elastoplast, with an orthogonal basis of the same order as the one in the neighboring cells. Comparisons on 1D and 2D scalar diffusion problems in terms of accuracy and stability with other viscous DG schemes are first given. Then, 2D results on acoustic problems, vortex problems and boundary layer problems both on Cartesian or unstructured triangular grids illustrate stability, precision and versatility of this method.  相似文献   

15.
桑为民  李凤蔚  鄂秦 《计算物理》2002,19(6):557-560
描述了一种基于直角叉树网格的Euler和N-S方程自适应算法.由于考虑了粘性的作用,提出并使用了四边形叉树混合网格的方法,在几何表面附近生成贴体的四边形网格,外流场使用直角叉树网格.采用中心有限体积法,对Euler及N-S方程进行数值求解,对N-S方程的计算中加入了B-L代数湍流模型.在流场中,运用了网格自适应算法,提高了数值计算对激波、流动分离等特性的捕捉和分辨能力.采用上述方法,数值分析了单段和多段翼型的绕流问题.  相似文献   

16.
Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of r-refinement adaptive grids obtained from solving a single Monge–Ampère (MA) equation addresses the high-resolution requirements near the x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton–Krylov–Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated.  相似文献   

17.
We study time step restrictions due to linear stability constraints of Runge–Kutta Discontinuous Galerkin methods on triangular grids. The scalar advection equation is discretized in space by the Discontinuous Galerkin method with either the Lax–Friedrichs flux or the upwind flux, and integrated in time with various Runge–Kutta schemes designed for linear wave propagation problems or non-linear applications. Von–Neumann-like analyses are performed on structured periodic grids made up of congruent elements, to investigate the influence of element shape on the stability restrictions. We assess CFL conditions based on different element size measures, among which only the radius of the inscribed circle and the shortest height prove appropriate, although they are not totally independent of the triangle shape. We explain their general behaviour with respect to element quality, and report the corresponding Courant numbers with both types of flux and polynomial order p ranging from 1 to 10, for use as guidelines in practical simulations. We also compare the performance of the Lax–Friedrichs flux and the upwind flux, and we draw general conclusions about the relative computational efficiency of RK schemes. The application of CFL conditions to two examples involving respectively an unstructured and a hybrid grid confirms our results, although it shows that local stability criteria tend to yield too restrictive conditions.  相似文献   

18.
With many superior features, Runge–Kutta discontinuous Galerkin method (RKDG), which adopts Discontinuous Galerkin method (DG) for space discretization and Runge–Kutta method (RK) for time integration, has been an attractive alternative to the finite difference based high-order Computational Aeroacoustics (CAA) approaches. However, when it comes to complex physical problems, especially the ones involving irregular geometries, the time step size of an explicit RK scheme is limited by the smallest grid size in the computational domain, demanding a high computational cost for obtaining time accurate numerical solutions in CAA. For computational efficiency, high-order RK method with nonuniform time step sizes on nonuniform meshes is developed in this paper. In order to ensure correct communication of solutions on the interfaces of grids with different time step sizes, the values at intermediate-stages of the Runge–Kutta time integration on the elements neighboring such interfaces are coupled with minimal dissipation and dispersion errors. Based upon the general form of an explicit p-stage RK scheme, a linear coupling procedure is proposed, with details on the coefficient matrices and execution steps at common time-levels and intermediate time-levels. Applications of the coupling procedures to Runge–Kutta schemes frequently used in simulation of fluid flow and acoustics are given, including the third-order TVD scheme, and low-storage low dissipation and low dispersion (LDDRK) schemes. In addition, an analysis on the stability of coupling procedures on a nonuniform grid is carried out. For validation, numerical experiments on one-dimensional and two-dimensional problems are presented to illustrate the stability and accuracy of proposed nonuniform time-step RKDG scheme, as well as the computational benefits it brings. Application to a one-dimensional nonlinear problem is also investigated.  相似文献   

19.
刘宇迪 《计算物理》2004,21(2):149-155
在线性斜压非静力滞弹性方程组的基础上,从频率和群速方面讨论了10种三维网格的计算频散性,结果表明三维网格EL/CP、C/CP与Z/LZ计算频散性能较好.从而为非静力原始方程大气模式选取三维网格提供指导.  相似文献   

20.
During the past two decades, the lattice Boltzmann (LB) method has been introduced as a class of computational fluid dynamic methods for fluid flow simulations. In this method, instead of solving the Navier Stocks equation, the Boltzmann equation is solved to simulate the flow of a fluid. This method was originally developed based on uniform grids. However, in order to model complex geometries such as porous media, it can be very slow in comparison with other techniques such as finite differences and finite elements. To eliminate this limitation, a number of studies have aimed to formulate the lattice Boltzmann on the unstructured grids. This paper deals with simulating fluid flow through a synthetic porous medium using the LB method and on the quadtree grid structure. To this end, the LB method was used on nonuniform grids coupled with a technique for image reconstruction which resulted in the quadtree grids for simulation of fluid flow through porous media. Accuracy and efficiency of this algorithm is compared against the conventional LB method based on uniform grids. While the decrease in computational time in the proposed LB method on nonuniform grids is found to be significant regarding the size of the initial and reconstructed images, the same level of accuracy is obtained when compared with the conventional LB method on uniform grids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号