首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 ℃. By using atomic force microscopy and Raman spectroscopy, we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates, including the hydrogen etching process, the stacking type, and the number of layers. Hopefully, our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.  相似文献   

2.
In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates,including the hydrogen etching process,the stacking type,and the number of layers.Hopefully,our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.  相似文献   

3.
A nonpolar SiC(1120) substrate has been used to fabricate epitaxial graphene (EG). Two EGs with layer numbers of 8-10 (referred to as MLG) and 2-3 (referred to as FLG) were used as representative to study the substrate effect on EG through temperature dependent Raman scattering. It is found that Raman lineshifts of G and 2D peaks of the MLG with temperature are consistent with that of a free graphene predicted by theory calculation, indicating that the substrate influence on the MLG is undetectable. While Raman G peak lineshifts of the FLG to that of the free graphene are obvious, however, its lineshift rate (-0.016 cm-1/K) is almost one third of that (-0.043 cm-1/K) of a EG on 6H-SiC (0001) in the temperature range from 300 K to 400 K, indicating a weak substrate effect from SiC (1120) on the FLG. This renders the FLG a high mobility around 1812 cm2- ·V-1-·s-1 at room temperature even with a very high carrier concentration about 2.95× 1013 cm-2 (p-type). These suggest SiC (1120) is more suitable for fabricating EG with high performance.  相似文献   

4.
An epitaxial graphene (EG) layer is successfully grown on a Si-terminated 6H-SiC ((9001) substrate by the method of thermal annealing in an ultrahigh vacuum molecular beam epitaxy chamber. The structure and morphology of the EG sample are characterized by reflection high energy diffraction (RHEED), Raman spectroscopy and atomic force microscopy (AFM). Graphene diffraction streaks can are clearly observed in the Raman spectrum. The AFM about 4-10 layers. be seen in RHEED. The G and 2D peaks of graphene results show that the graphene nominal thickness is  相似文献   

5.
李佳  王丽  冯志红  蔚翠  刘庆彬  敦少博  蔡树军 《中国物理 B》2012,21(9):97304-097304
Graphene with different surface morphologies were fabricated on 8° -off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8° -off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Siterminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm 2 /V·s at a carrier density of 9.8.×10 12 cm 2 . Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.  相似文献   

6.
Defects in silicon carbide(SiC) substrate are crucial to the properties of the epitaxial graphene(EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC(0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG.  相似文献   

7.
Quantum resonant tunneling behaviors of double-barrier structures on graphene are investigated under the tight- binding approximation. The Klein tunneling and resonant tunneling are demonstrated for the quasiparticles with energy close to the Dirac points. The Klein tunneling vanishes by increasing the height of the potential barriers to more than 300 meV. The Dirac transport properties continuously change to the Schr6dinger ones. It is found that the peaks of resonant tunneling approximate to the eigen-levels of graphene nanoribbons under appropriate boundary conditions. A comparison between the zigzag- and armchair-edge barriers is given.  相似文献   

8.
Suspended graphene devices are successfully fabricated by using a novel PMMA/MMA/PMMA tri-layer resist technique. The gap between graphene and dielectric substrate can be easily controlled by the thickness of the bottom PMMA layer, and no wet-etching with hazardous hydrofluoric acid is involved in our fabrication process. Electrical characterizations on suspended graphene devices are performed in vacuum when in-situ current annealing directly leads to a significant improvement on transport properties of graphene, i.e., the increase of carrier mobility with the reduction of width of Dirac peak. Our results make a new opportunity to study intrinsic properties of graphene.  相似文献   

9.
The adiabatic parametric electron pump of the infinite zigzag graphene ribbons and the infinite armchair graphene ribbons is investigated by the tight binding method. The pumping signals are added by two gates around the ribbons. It is shown that the de current can be pumped out by cyclically varying the two gate voltages and the pumped current strongly depends on the driving frequency, the pumping amplitude and the phase difference of the gate voltages. The pumped current is mediated by the graphene energy levels and its peaks occur around the energies where transmission coefficients and density of states are large. The pump current may give one peak or two opposite peaks corresponding to each transmission peak or transmission pair peaks. The height and width of the current peaks increase with the amplitude of the pumping driving voltages. The pumped current is antisymmetric about the phase difference Ф=π and for small pumping amplitude the pumped current is a sinusoidal function of the phase difference. Some graphene ribbons, although with different widths, have very similar contours of the transmission coefficients and give the same pumped current figures.  相似文献   

10.
Patterning SiC substrates with focused ion beam for growth of confined graphene nanostructures is interesting for fabrication of graphene devices. However, by imposing an ion beam, the morphology of illuminated SiC substrate surface is inevitably damaged, which imposes significant effects on the subsequent growth of graphene. By using confocal Raman spectroscopy, we investigate the effects of ion beam illumination on the quality of graphene layers that are grown on 6H-SiC (0001) substrates with two different growth methods. With the first method, the 6H-SiC (0001) substrate is flash annealed in ultra-high vacuum. Prominent defects in graphene grown on illuminated areas are revealed by the emergence of Raman D peak. Significant changes in D peak intensity are observed with Ga+ ion fluence as low as 10^5 μm^-2. To eliminate the damage from the ion beam illumination, hydrogen etching is employed in the second growth method, with which prominent improvement in the quality of crystalline graphene is revealed by its Raman features. The defect density is significantly reduced as inferred from the disappearance of D peak. The Raman shift of G peak and 2D peak indicates strain-released graphene layers as grown in such a method. Such results provide essential information for patterning graphene nano-devices.  相似文献   

11.
Hall effect measurements of a graphene-on-SiC system were carried out as a function of temperature (1.8–200 K) at a static magnetic field (0.5 T). With the analysis of temperature dependent single-field Hall data with the Simple Parallel Conduction Extraction Method (SPCEM), bulk and two-dimensional (2D) carrier densities and mobilities were extracted successfully. Bulk carrier is attributed to SiC substrate and 2D carrier is attributed to the graphene layer. For each SPCEM extracted carrier data, relevant three-dimensional or 2D scattering analyses were performed. Each SPCEM extracted carrier data were explained with the related scattering analyses. A temperature independent mobility component, which may related to an interaction between graphene and SiC, was observed for both scattering analyses with the same mobility limiting value. With the SPCEM, effective ionized impurity concentration of SiC substrate, extracted 2D-mobility, and sheet carrier density of the graphene layer are calculated with using temperature dependent static magnetic field Hall data.  相似文献   

12.
We have investigated transport characteristics of epitaxial graphene grown on semi-insulating silicon-face 4H-silicon carbide (SiC) substrate by thermal decomposition method in relatively high N2 pressure atmosphere. We have succeeded in forming 1–2 layers of graphene on SiC in controlled manner. The surface morphology of formed graphene was analyzed by atomic force microscopy (AFM), low-energy electron diffraction (LEED) and low-energy electron microscope (LEEM). We have confirmed single-layer graphene growth in average by this method. Top-gated, single-layer graphene field-effect transistors (FETs) were fabricated on epitaxial graphene grown on 4H-SiC. Increased on/off ratio of nearly 100 at low temperature and extremely small minimum conductance (0.018–0.3 in 4 e2/h) in gated Hall-bar samples suggest possible band-gap opening of single-layer epitaxial graphene grown on Si-face SiC.  相似文献   

13.
Abstract

The recent progress using Raman spectroscopy and imaging of graphene is reviewed. The intensity of the G band increases with increased graphene layers, and the shape of 2D band evolves into four peaks of bilayer graphene from a single peak of monolayer graphene. The G band will blue shift and become narrow with both electron and hole doping, whereas the 2D band will blue shift with hole doping and red shift with electron doping. Frequencies of the G and 2D band will downshift with increasing temperature. Under compressed strain, the upshift of the G and 2D bands can be found. Moreover, the strong Raman signal of monolayer graphene is explained by interference enhancement effect. As for epitaxial graphene, Raman spectroscopy can be used to identify the superior and inferior carrier mobility. The edge chirality of graphene can be determined by using polarized Raman spectroscopy. All results mentioned here are closely relevant to the basic theory of graphene and application in nanodevices.  相似文献   

14.
Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to be key for the practical use of graphene as a thermoelectric material, which could be achieved with epitaxial graphene. All of these results reveal that epitaxial graphene is physically interesting.  相似文献   

15.
We fabricated high-mobility field-effect transistors based on epitaxial graphene synthesized by vacuum graphitization of both the Si- and C-faces of SiC. Room-temperature field-effect mobilities >4000 cm2/V s for both electrons and holes were achieved, although with wide distributions. By using a high-k gate dielectric, we were able to measure the transistor characteristics in a wide carrier density range, where the mobility is seen to decrease as the carrier density increases. We formulate a simple semiclassical model of electrical transport in graphene, and explain the sublinear dependence of conductivity on carrier density from the view point of the few-layer graphene energy band structure. Our analysis reveals important differences between the few-layer graphene energy dispersions on the SiC Si- and C-faces, providing the first evidence based on electrical device characteristics for the theoretically proposed energy dispersion difference between graphene synthesized on these two faces of SiC.  相似文献   

16.
The grain boundaries of graphene are disordered topological defects, which would strongly affect the physical and chemical properties of graphene. In this paper, the spectral characteristics and photoresponse of MoS_2/graphene heterostructures are studied. It is found that the blueshift of the G and 2 D peaks of graphene in Raman spectrum is due to doping. The lattice mismatch at the graphene boundaries results in a blueshift of MoS_2 features in the photoluminescence spectra, comparing to the MoS_2 grown on SiO_2. In addition, the photocurrent signal in MoS_2/hexagonal single-crystal graphene heterostructures is successfully captured without bias, but not in MoS_2/polycrystalline graphene heterostructures.The electron scattering at graphene grain boundaries affects the optical response of MoS_2/graphene heterostructures. The photoresponse of the device is attributed to the optical absorption and response of MoS_2 and the high carrier mobility of graphene. These findings offer a new approach to develop optoelectronic devices based on two-dimensional material heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号