首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We systematically investigate slowly moving matter-wave gap soliton propagation in weak random optical lattices. With the weak randomness, an effective-particle theory is constructed to show that the motion of a gap soliton is similar to a particle moving in random potentials. Based on the effective-particle theory, the effects of the randomness on gap solitons are obtained and the trajectories of gap solitons are well predicted. Moreover, the general laws that describe the movement depending on the weak randomness are obtained. We find that with an increase of the random strength, the ensemble-average velocity reduces slowly and the reflection probability becomes larger. The theoretical results based on the effective-particle theory are confirmed by the numerical simulations based on the Gross-Pitaevskii equation.  相似文献   

2.
Oscillatory behavior of spatial solitons in a transverse parabolic gradient refractive index distribution (GRIN) waveguide with both local and nonlocal nonlinearity is investigated. Dynamics of such solitons are analyzed by the effective-particle approach method. For weak nonlocal nonlinearity, solitons oscillate in transverse direction periodically during propagation. The normalized width and maximum of refractive index variation of the waveguide play a key role in determining the oscillating period while the position of soliton oscillatory center is slightly influenced by the nonlocal nonlinearity. Stronger nonlocal nonlinearity leads to instability of the oscillatory solitons. Furthermore, the dynamics of the solitons are simulated numerically and good agreements are obtained between the analysis and numerical results. This behavior may be used in all-optical routers, switches etc. PACS 42.65.Tg; 42.65.Jx; 42.65.Wi  相似文献   

3.
董亮伟  金洪震  王辉 《中国物理》2007,16(10):3004-3008
Dynamics of (1+1)D spatial solitons in a Kerr medium with a transversely symmetrical refractive index profile is investigated. Propagation of solitons is analysed theoretically by using an effective-particle approach. Analytical results show that the soliton oscillates periodically with a variable acceleration. The expression of oscillatory period is derived by introducing a concept of `average acceleration'. Both acceleration and oscillatory period are determined by the parameters of the input soliton and the waveguide. Propagations of solitons are simulated numerically and good agreement is obtained between the theoretical and numerical results.  相似文献   

4.
We investigate the formation of fundamental discrete solitons and dipole-mode gap solitons in triangular photonic lattices imprinted in photorefractive nonlinear media. These lattices are strongly affected by the photorefractive anisotropy, resulting in orientation-dependent refractive index structures with reduced symmetry. It is demonstrated that two different orientations of the lattice wave enable the formation of fundamental discrete solitons in the total internal reflection gap. Furthermore, it is shown that one lattice orientation additionally supports dipole-mode solitons in the Bragg reflection gap. The experimental results are corroborated by numerical simulations using the full anisotropic model. PACS 42.65.Tg; 42.65.Wi; 42.70.Qs  相似文献   

5.
The example of Kadomtsev-Petviashvili equations with a random time-dependent force (stochastic Kadomtsev-Petviashvili equations) is used to show that the theory of Brownian particle motion can be applied to the theory of the stochastic behavior of solitons of model hydrodynamic equations which are completely integrable in the absence of forces and interrelated by the generalized Galilean transformation. The Brownian motion of two-dimensional algebraic solitons of the Kadomtsev-Petviashvili equations with positive dispersion leads to their diffusion broadening similar to the broadening of one-dimensional solitons of other fully integrable hydrodynamic equations. However, for longer times the rate of decay of algebraic solitons is higher because of the degeneracy of the momentum integral for these solitons. The behavior of a periodic chain of algebraic solitons is established under the action of a random force. Tilted plane solitons of the Kadomtsev-Petviashvili equations with negative dispersion vary under the action of a random force similar to the solitons of the Korteweg-de Vries equation. Several of these solitons interact via “virtual solitons” and generate new solitons provided that resonance conditions are satisfied whose dimensions increase as a result of the influence of the random force.  相似文献   

6.
Light propagation in one-dimensional nonlinear waveguide arrays with self-defocusing intensity-resonant nonlinearity is investigated theoretically. We study thoroughly conditions for existence and stability of both gap and discrete dark solitons. According to the linear stability analysis both fundamental types (on-site and intersite) of gap solitons may be stable. Discrete dark solitons are unstable except in the low-power regime and, depending on system parameters, evolve into either gray solitons, breathers, or background radiation. Mobility of these solitons is analyzed by the free energy concept: gap solitons are immobile but dark solitons can be easily set in motion.  相似文献   

7.
We study the stabilization of the soliton transported bio-energy by the dynamic equations in the improved Davydov theory from four aspects containing the feature of free motion and states of the soliton at the long-time motion and at biological temperature 300 K and behaviors of collision of the solitons by Runge-Kutta method and physical parameter values appropriate to the $\alpha$-helix protein molecules. We prove that the new solitons can move without dispersion at a constant speed retaining its shape and energy in free and long-time motions and can go through each other without scattering. If considering further influence of the temperature effect of heat bath on the soliton, it is still thermally stable at biological temperature 300 K and in a time as long as 300 ps and amino acid spacings as large as 400, which shows that the lifetime of the new soliton is at least 300 ps, which is consistent with analytic result obtained by quantum perturbation theory. These results exhibit that the new soliton is a possible carrier of bio-energy transport and the improved model is possibly a candidate for the mechanism of this transport.  相似文献   

8.
A review is given of features and motion of two-dimensional dissipative solitons in lasers and laser amplifiers with saturable absorption. We present a rich variety of stable complexes with weak, strong, and mixed coupling of individual laser solitons. The type of coupling is determined by the topology of the distribution of energy flows within the complex. We reveal the existence of stable dissipative soliton complexes with curvilinear motion of their centre of mass. This type of motion results from the field distribution asymmetry and is well pronounced for complexes of laser solitons with strong and mixed types of coupling. Similar complexes are expected to exist in different spatially distributed nonlinear dissipative systems, including schemes with discrete dissipative solitons. PACS 42.65.Tg  相似文献   

9.
We consider the motion of a classical particle in a random isotropic potential arising from uniformly distributed scatterers in two dimensions. We prove that in the weak coupling limit the velocity process of the particle converges in distribution to Brownian motion on a surface of constant speed, i.e. on the circle. The resulting equation for the probability density of the particle is related to the Landau equation in plasmas.also: Department of PhysicsWork supported in part by National Science Foundation Grant No. DMS-85-12505 and AFOSR No. C010  相似文献   

10.
Surface superlattice gap solitons   总被引:1,自引:0,他引:1  
He YJ  Chen WH  Wang HZ  Malomed BA 《Optics letters》2007,32(11):1390-1392
We demonstrate that specific surface superlattice gap solitons can be supported at an interface between a one-dimensional photonic superlattice and a uniform medium with saturable nonlinearity. The solitons are stable in the semi-infinite gap but do not exist in the first gap. With the decrease of the power, the solitons jump from the surface site to the next one, and they may continue the motion into the lattices, which offers potential applications for the routing of optical signals.  相似文献   

11.
We study fundamental spectral properties of random block operators that are common in the physical modelling of mesoscopic disordered systems such as dirty superconductors. Our results include ergodic properties, the location of the spectrum, existence and regularity of the integrated density of states, as well as Lifshits tails. Special attention is paid to the peculiarities arising from the block structure such as the occurrence of a robust gap in the middle of the spectrum. Without randomness in the off-diagonal blocks the density of states typically exhibits an inverse square-root singularity at the edges of the gap. In the presence of randomness we establish a Wegner estimate that is valid at all energies. It implies that the singularities are smeared out by randomness, and the density of states is bounded. We also show Lifshits tails at these band edges. Technically, one has to cope with a non-monotone dependence on the random couplings.  相似文献   

12.
We consider effects of random time modulation of the nonlinearity coefficient on the dynamics of one- and two-dimensional (1D and 2D) solitary waves in the nonlinear Schrödinger equation (NLSE). In particular, the cases of a single Gaussian random variable, and a temporally correlated Gaussian process are considered. In the 1D case, we demonstrate the robustness of solitons against the random nonlinearity management. In the 2D case, the share (percentage) of realizations that lead to collapse of a localized pulse is computed, in order to quantify the effect of the randomness in preventing the collapse. Dependences of this share on the mean value, standard deviation, and correlation length of the random process are obtained, and, whenever possible, compared to analytical predictions.  相似文献   

13.
We use a multiple time scale boundary layer theory to derive the equation of motion for a dark (or grey) soliton propagating through an effectively one-dimensional cloud of Bose-Einstein condensate, assuming only that the background density and velocity vary slowly on the soliton scale. We show that solitons can exhibit viscous or radiative acceleration (antidamping), which we estimate as slow but observable on experimental time scales.  相似文献   

14.
We propose a lattice model for Dirac fermions which allows us to break the degeneracy of the node structure. In the presence of a random gap we analyze the scaling behavior of the localization length as a function of the system width within a numerical transfer-matrix approach. Depending on the strength of the randomness, there are different scaling regimes for weak, intermediate and strong disorder. These regimes are separated by transitions that are characterized by one-parameter scaling.  相似文献   

15.
We propose the use of bright matter-wave solitons formed from Bose-Einstein condensates with attractive interactions to probe and study quantum reflection from a solid surface at normal incidence. We demonstrate that the presence of attractive interatomic interactions leads to a number of advantages for the study of quantum reflection. The absence of dispersion as the soliton propagates allows precise control of the velocity normal to the surface and for much lower velocities to be achieved. Numerical modelling shows that the robust, self-trapped nature of bright solitons leads to a clean reflection from the surface, limiting the disruption of the density profile and permitting accurate measurements of the reflection probability.  相似文献   

16.
We introduce a model of branching Brownian motions in time-space random environment associated with the Poisson random measure. We prove that, if the randomness of the environment is moderated by that of the Brownian motion, the population density satisfies a central limit theorem and the growth rate of the population size is the same as its expectation with strictly positive probability. We also characterize the diffusive behavior of our model in terms of the decay rate of the replica overlap. On the other hand, we show that, if the randomness of the environment is strong enough, the growth rate of the population size is strictly less than its expectation almost surely. To do this, we use a connection between our model and the model of Brownian directed polymers in random environment introduced by Comets and Yoshida. Partly supported by the Global COE program at Department of Mathematics and Research Institute for Mathematical Sciences, Kyoto University.  相似文献   

17.
A topological field theory with Bogomol'nyi solitons is examined. The Bogomol'nyi solitons have much in common with the instanton in Yang-Mills theory; consequently we called them ‘topological instantons.’ When periodic boundary conditions are imposed, the field theory comments indirectly on the speed of light within the theory. In this particular model the speed of light is not a universal constant. This may or may not be relevant to the current debate in astronomy and cosmology over the large values of the Hubble constant obtained by the latest generation of ground- and space-based telescopes. An experiment is proposed to detect spatial variation in the speed of light.  相似文献   

18.
针对真随机数生成问题,提出基于大气湍流光闪烁图像的真随机数提取方法。利用相机获取波长为532 nm的激光经过大气湍流传输后的光斑图像,根据其闪烁特性,分别采用固定间隔选取和多步长选取的方式选取光斑图像,固定间隔选择50帧,多步长选择30帧、70帧和100帧,得到的光斑图像相关性很弱,相关系数均小于0.3,由于湍流效应的影响,图像中的像素点发生无规则变化,通过对像素点作组合计算以提取随机序列;通过NIST(national institute of science and technology)随机性测试的方法,对提取的随机序列进行测试。实验结果表明:固定间隔选取的随机序列随机效果一般,测试结果存在P值小于0.01的情况,而多步长选取测试的P值均大于0.01,可以通过随机性测试。  相似文献   

19.
本文在非对称周期势中考虑驱动马达的机械化学耦合,基于布朗马达的工作原理,利用MATLAB数值模拟驱动马达在一定实验条件下的运动特征.我们首先模拟了单个驱动马达的位移和速度随时间变化的图像,然后分别计算了多个驱动马达运动的平均速度,最后计算了不同负载力条件下马达运动速度的系综平均值.模拟结果表明驱动马达在定向运动中存在等...  相似文献   

20.
为研究高速摄影中激光相干噪声的影响因素,降低激光照明中散斑噪声对高速摄影成像质量的影响,对激光照射表面的粗糙程度与形成的散斑场统计特性之间的关系进行了研究。基于菲涅尔-基尔霍夫衍射原理,分析了高斯光束入射在随机粗糙表面上经反射形成的散斑图样,通过对大量散斑图样的数据统计,得出了激光散斑的信噪比、自相关函数、概率密度函数与入射表面粗糙度之间的变化关系。计算结果表明:粗糙度的增大使散斑场信噪比降低、相干程度减小、概率密度降低,即表面越粗糙散斑噪声越严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号