首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
纳米粒子在不互溶两相间的相转移在催化剂的循环利用、药物输送等领域发挥着重要的作用。环境响应性纳米粒子因兼具纳米粒子的优点和刺激响应的特性而受到了广泛的关注。环境响应型纳米粒子相转移的出现使相转移过程更为高效、可逆且智能化,已展现出了广阔的应用前景。本文综述了近年来环境响应型纳米粒子在不互溶两相间转移的研究进展,主要内容包括pH、CO2、温度、光照、离子强度、配体交换和离子交换等刺激诱导的纳米粒子的相转移及其在催化、反应分离耦合等方面的应用,并分析了在环境刺激过程中纳米粒子的界面效应、自组装行为以及溶剂化效应等对相转移过程起到的关键性作用;同时,对目前该领域所面临的主要问题和进一步的研究工作提出了建议。  相似文献   

2.
Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer.  相似文献   

3.
Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.  相似文献   

4.
Phase transfer catalysis, a technique to bring the reactants in two immiscible phases together by adding a phase transfer agent, has been employed in the production of fine chemicals and pharmaceuticals in the last few decades. The third liquid phase (catalytic phase) may be formed when phase transfer catalysts (PTC), cannot be dissolved in either organic or aqueous phase. The third phase catalytic systems have the following three advantages, that is, (1) high activity (2) repeated use and (3) separation between the organic phase and the aqueous phase. It is expected that simple new processes can be constructed by applying these three advantages.  相似文献   

5.
Wu C  Wang J  Wang H  Pei Y  Li Z 《Journal of chromatography. A》2011,1218(48):8587-8593
Compared with the conventional ionic liquids, amino acid ionic liquids are more biodegradable and biocompatible, and can enhance stability of biomaterials. In this work, amino acid ionic liquids 1-butyl-3-methylimidazolium L-serine ([C(4)mim][Ser]), 1-butyl-3-methylimidazolium glycine ([C(4)mim][Gly]), 1-butyl-3-methylimidazolium L-alanine ([C(4)mim][Ala]) and 1-butyl-3-methylimidazolium L-leucine ([C(4)mim][Leu]) have been synthesized. These ionic liquids are found to form aqueous two-phase systems (ATPSs) by the salted-out of K(3)PO(4) in aqueous solutions. Phase diagram of the ATPSs and the Gibbs energies of transfer of methylene group from the bottom salt-rich phase to the top ionic liquid-rich phase have been determined at 298.15K and pH 14, and the effect of anionic structure of the ionic liquids on phase formation of the ATPSs and the relative hydrophobicity between the top and the bottom phases are then examined. In order to understand the effect of relative hydrophobicity of the phases in equilibrium in the ATPSs on the extraction/separation capability of biomolecules, the partition coefficients of cytochrome-c (as a model biomolecule) in the ATPSs are measured by spectrophotometry. It is suggested that hydrophobic interactions are mainly responsible for the higher partition coefficients of cytochrome-c in aqueous two-phase systems at pH 14, and the extraction and separation capacity of biomolecules can be improved by the modulation of the relative hydrophobicity of the phases and/or the pH of the system.  相似文献   

6.
亲水作用色谱固定相及其在中药分离中的应用   总被引:4,自引:0,他引:4  
郭志谋  张秀莉  徐青  梁鑫淼 《色谱》2009,27(5):675-681
亲水作用色谱(HILIC)作为一种分离极性化合物的液相色谱模式,近年来越来越受到关注和重视。一方面是因为强极性化合物的分离问题引起了各个研究领域的重视,如药物分析、代谢组学、蛋白质组学等研究领域都不同程度地涉及强极性化合物的分离问题;另一方面是由于HILIC具有流动相组成简单、分离效率较高、与质谱兼容以及反压较低等优势。固定相是HILIC发展和应用的基础,本文主要从固定相分子结构的角度对HILIC固定相的结构特征、保留特性以及应用概况等进行了综述。对传统正相色谱固定相用于HILIC以及专门设计的HILIC固定相进行了介绍,评述了各自的优缺点和应用概况;对近年来HILIC固定相在中药分离中的应用进行了介绍;并对HILIC固定相的发展进行了展望。  相似文献   

7.
Electroosmotic flow in a water column surrounded by an immiscible liquid   总被引:1,自引:0,他引:1  
In this paper, we conducted numerical simulation of the electroosmotic flow in a column of an aqueous solution surrounded by an immiscible liquid. While governing equations in this case are the same as that in the electroosmotic flow through a microchannel with solid walls, the main difference is the types of interfacial boundary conditions. The effects of electric double layer (EDL) and surface charge (SC) are considered to apply the most realistic model for the velocity boundary condition at the interface of the two fluids. Effects on the flow field of ?-potential and viscosity ratio of the two fluids were investigated. Similar to the electroosmotic flow in microchannels, an approximately flat velocity profile exists in the aqueous solution. In the immiscible fluid phase, the velocity decreases to zero from the interface toward the immiscible fluid phase. The velocity in both phases increases with ?-potential at the interface of the two fluids. The higher values of ?-potential also increase the slip velocity at the interface of the two fluids. For the same applied electric field and the same ?-potential at the interface of the two fluids, the more viscous immiscible fluid, the slower the system moves. The viscosity of the immiscible fluid phase also affects the flatness of the velocity profile in the aqueous solution.  相似文献   

8.
《Fluid Phase Equilibria》2004,219(2):195-203
The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.  相似文献   

9.
A dispersed-emulsion separation system is a type or configuration of liquid-membrane separation systems. Such systems are comprised of three liquid phases: two of these liquid phases are miscible with each other but are separated by a third liquid phase (the membrane) which is immiscible with both. The interfaces may be stabilized by a surfactant. Mass is transferred from one of the miscible phases across the liquid membrane to the second miscible phase. These systems were introduced by Li1,2.  相似文献   

10.
YoshihiroSaito 《色谱》2003,21(6):638-648
Development of miniaturized separation system consisted of microscale extraction and liquid phase separation processes has been reviewed. Various types of novel bonded stationary phases have been developed on the basis of the systematic analysis for the retention behavior of polycyclic aromatic hydrocarbons on experimentally synthesized phases. In this review, the miniaturization of microscale sample preparation technique and the effective on-line coupling to microcolumn liquid phase separations are also described especially focusing on the approach by the author‘‘s group. The novel use of synthetic polymer filaments as the stationary phase and extraction media in those microscale separation systems will be introduced along with the applications in gas chromatographic separation.  相似文献   

11.
Polymer brush-grafted particles (i.e., hairy particles) capable of undergoing direct, especially reversible, phase transfer from one liquid phase to another immiscible liquid phase in response to environmental changes have received growing interest due to their great potential in a wide variety of applications. This article is intended to review recent exciting advances in stimuli-triggered phase transfer of hairy particles in liquid-liquid biphasic systems. We start with a discussion of the mechanism of particle transfer across a liquid-liquid interface and progress to the synthesis of polymer brushes grafted on particles and the transfer of hairy particles between two immiscible liquid phases induced by various external stimuli, including temperature, pH, ionic strength, light, and solvents. The applications of thermally triggered phase transfer of hairy particles in catalysis (thermoregulated phase transfer catalysis) are discussed, followed by a summary and our perspective on future development. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1600–1619  相似文献   

12.
A new aqueous two phase liquid system (ATPS) based on the ionic liquid 1-butyl-3-methyl imidazolium chloride (BMIM Cl), potassium dibasic phosphate (K(2)HPO(4)) and water was recently proposed in the literature. The full phase diagram of this ATPS was prepared and some tie lines were fully determined. It was compared to classical ATPSs based on polyethylene glycol with an average molecular mass of 1000 (PEG 1000) and 10,000 (PEG 10000) and K(2)HPO(4). Two countercurrent chromatography (CCC) columns, a hydrostatic Sanki and a J type hydrodynamic CCC columns were used to test the liquid phase retention of these ATPSs in all possible configurations. It was found that the BMIM Cl ATPS liquid phases were much easier to retain in the two CCC columns than the PEG 1000 ATPS phases. Using protein and alcohol solutes, it was established that the BMIM Cl ATPS has a polarity completely different from that of the PEG 1000 ATPS. For example, ovalbumin partitions equally between the two phases of the PEG 1000 ATPS (K(D)=1.4) when it is completely located in the BMIM Cl upper phase of the ionic liquid ATPS (K(D)=180). The discrimination factor of the ionic liquid system and its intrinsic hydrophobicity were respectively found three times higher and ten times lower than the respective values of the PEG 1000 ATPS.  相似文献   

13.
The partitioning of an immiscible and volatile organic component between the gas and aqueous condensed phases of an aerosol is investigated using optical tweezers. Specifically, the phase segregation of immiscible decane and aqueous components within a single liquid aerosol droplet is characterized by brightfield microscopy and by spontaneous and stimulated Raman scattering. The internally mixed phases are observed to adopt equilibrium geometries that are consistent with predictions based on surface energies and interfacial tensions and the volume fractions of the two immiscible phases. In the limit of low organic volume fraction, the stimulated Raman scattering signature is consistent with the formation of a thin film or lens of the organic component on the surface of an aqueous droplet. By comparing the nonlinear spectroscopic signature with Mie scattering predictions for a core-shell structure, the thickness of the organic layer can be estimated with nanometer accuracy. Time-dependent measurements allow the evolving partitioning of the volatile organic component between the condensed and vapor phases to be investigated.  相似文献   

14.
A novel method for the detection of pesticides by inhibition of cholinesterase (ChE) from earthworm was developed. Two immiscible phases are employed where the organic phase isooctane contains substrate and the aqueous phase does enzyme. Water insoluble indophenol acetate was hydrolyzed by ChE at the interface of two phases to produce water soluble indophenol. The latter spontaneously penetrates into aqueous solution and gives the change of electrochemical signal. Organophosphorus compounds methyl parathion dissolved in isooctane phase could inhibit the activity of ChE at the interface of two phases and a corresponding inhibition relationship is given in the concentration range of 50 ng/ml–100 μg/ml.  相似文献   

15.
This work reports on protein transport phenomena discovered in partitioning experiments with a novel setup for continuous-flow two-phase electrophoresis consisting of a microchannel in which a phase boundary is formed in flow direction. Proteins can be partitioned exploiting their affinity to different aqueous phases in two-phase systems. This separation process may be enhanced or extended by applying an electric field perpendicular to the phase boundary. In this context, microsystems offer new possibilities, as interfacial forces usually dominate over volume forces, thus allowing a superior control of the formation and arrangement of liquid/liquid phase boundaries. The two immiscible phases which are injected separately into the microchannel are taken from a polyethylene glycol (PEG)-dextran system. The side walls of the channel are partially made of gel material which serves as an ion conductor and decouples the channel from the electrodes, thus preventing bubble generation inside the separation channel. The experiments show that the electrophoretic transport of proteins between the laminated liquid phases is characterized by a strong asymmetry. When bovine serum albumin (BSA) is introduced into the PEG-rich phase, it can easily be transferred into the dextran-rich phase via an applied electric field of low strength or just by diffusion. In the reverse case, up to a certain field strength the transfer to the opposing phase is strongly inhibited. Only if the field strength is further increased will the BSA molecules leave the dextran-rich phase almost completely.  相似文献   

16.
Organic-aqueous liquid (phenol) extraction is one of many standard techniques to efficiently purify DNA directly from cells. The cell components naturally distribute themselves into the two fluid phases in order to minimize interaction energies of the biological components with the surrounding solvents. The membrane components and protein partition to the interface between the organic and aqueous phases while the DNA stays in the aqueous phase. The aqueous phase is then removed with a purified DNA sample. This work studies the first steps towards miniaturizing this liquid extraction technique in a microfluidic device. The first step is to understand how the two liquid phases behave in microchannels. Due to the interfacial tension between the two liquid phases, novel approaches must be examined in order to obtain interfacial stability under flow conditions. The stability of the organic-aqueous interface is improved by reducing the interfacial tension between the two phases by incorporating a surfactant into the aqueous phase. The variation of the interfacial tension as a function of surfactant concentration is also quantified in this work. This has led to the ability to create stable stratified microflows in both a dual inlet and three inlet microfluidic systems. Also, the first step in understanding biological interactions at the organic-aqueous interface is investigated using a fluorescently labeled bovine serum albumin protein.  相似文献   

17.
Water-in-water (W/W) emulsions are colloidal dispersions of an aqueous solution into another aqueous phase. Such dispersions can be formed in mixtures of at least two hydrophilic macromolecules, which are thermodynamically incompatible in solution, generating two immiscible aqueous phases. W/W emulsions are much less known than conventional oil-in-water or water-in-oil emulsions, despite the fact that phase separation in aqueous mixtures is highly common. The thermodynamics and the phase behavior of segregative phase separation in mixtures of hydrophilic polymers have focused a great attention, with many excellent scientific reports in the literature. However, the kinetic stability of water-in-water emulsions is generally difficult to control, since amphiphilic molecules do not adsorb on water-water interfaces. Consequently, surfactants are not good stabilizers for W/W emulsions, and until recently, only a limited number of scientific studies have dealt with the formation and stabilization of emulsions in aqueous two-phase systems. Recent advances and successful results in the stabilization of these emulsions, by alternative mechanisms, have triggered a renewed interest. Nowadays, fast progress is being made in formation and stabilization methods, and new knowledge is rapidly acquired, opening a wide range of novel possibilities for practical applications. Interestingly, highly stable water-in-water emulsions can be formulated using fully biocompatible and edible components, and consequently, these emulsions can be used in food formulations, among many other interesting applications. This review describes the general background of research in the field, and focuses on recent scientific advances, including phase behavior, formation, stability and kinetic aspects, as well as applications such as formation of microgels, encapsulation and drug delivery.  相似文献   

18.
Counter-current chromatography (CCC) is a form of liquid–liquid partition chromatography. It requires two immiscible solvent phases; the stationary phase is retained in the separation column, generally by centrifugal force, while the mobile phase is eluted. We recently replaced the mobile phase with supercritical fluid carbon dioxide (SF CO2). Since the solvent strength of SF CO2 can be varied by changing the temperature and pressure of the system, separation adjustments are thus more versatile. We investigated the pressure and temperature effects on resolution using water and low-carbon alcohol mixtures as the stationary phases. It was demonstrated that these special properties of SF CO2 were indeed beneficial to the optimization of separations. In addition, the phase retention ratio was examined in terms of separation resolution. The results appeared very similar to those obtained from conventional traditional CCC. This study should be helpful for the future development of SF applications in CCC.  相似文献   

19.
Countercurrent chromatography (CCC) is an attractive separation method because the analytes are partitioned between two immiscible liquid phases avoiding problems related to solid stationary phase. In recent years, this technique has made great progress in separation power and detection potential. This review describes coupling strategies involving high speed CCC (HSCCC) or centrifugal partition chromatography (CPC). It includes on-line extraction–isolation, hyphenation with mass spectrometry (MS) and nuclear magnetic resonance (NMR) detectors, multidimensional CCC (MDCCC), two-dimensional CCC (2D-CCC), on-line coupling with liquid chromatography (LC), and biological tests, and innovative off-line developments. The basic principles of each method are presented and applications are summarized.  相似文献   

20.
Breakthrough alternative technologies are urgently required to alleviate the critical need to decarbonise our energy supply. We showcase non-conventional approaches to battery and solar energy conversion and storage (ECS) system designs that harness key attributes of immiscible electrolyte solutions, especially the membraneless separation of redox active species and ability to electrify certain liquid–liquid interfaces. We critically evaluate the recent development of membraneless redox flow batteries based on biphasic systems, where one redox couple is confined to an immiscible ionic liquid or organic solvent phase, and the other couple to an aqueous phase. Common to all solar ECS devices are the abilities to harvest light, leading to photo-induced charge carrier separation, and separate the products of the photo-reaction, minimising recombination. We summarise recent progress towards achieving this accepted solar ECS design using immiscible electrolyte solutions in photo-ionic cells, to generate redox fuels, and biphasic “batch” water splitting, to generate solar fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号