首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a high-power, narrow linewidth and tunable quasi-continuous-wave (QCW) yellow laser system at 589.159?nm. The system is of a design employing single-pass sum-frequency generation (SFG) in a LBO crystal by mixing the 1064?nm with 1319?nm lines from a two diode-side-pumped Nd:YAG master oscillator-power amplifier (MOPA) laser system. With the pump power of 35?W at 1064?nm and 25?W at 1319?nm, a 7.5?W QCW output of the SFG yellow laser at 589.159?nm, which is the vacuum wavelength of a general sodium D2 line, is obtained with a linewidth less than 0.7?GHz and a beam-quality factor M 2=1.2. The wavelength of the laser can be precisely step-tuned from 589.148 to 589.167?nm with an increment of 0.13?pm by means of a temperature-controlled etalon.  相似文献   

2.
Generation of continuous-wave, tunable UV radiation (250–260 nm) by intracavity doubling a coumarin-515 ring dye laser is described. A cooled (200–280 K) ADP crystal with end faces cut at Brester's angle is placed inside the laser ring cavity which has been compensated for astigmatism and coma. UV output powers at 254 nm of 120 μW and 60 μW are achieved with the laser operating multimode (bandwidth ? 20 GHz) and single-mode (bandwidth ? 50 MHz), respectively. Continuous single-mode scans over the 253.7 nm mercury profile demonstrate sub-Doppler resolution of the Hg 6s6p 3PO1 - 6s21S0 transition.  相似文献   

3.
We report the difference-frequency generation (DFG) of ultrafast mid-infrared laser radiation around 3???m between two picosecond laser pulses with the center wavelengths of 800?nm and 1064?nm in a MgO:PPLN crystal at room temperature. The two laser pulses were generated from the actively synchronized picoseconds Ti:sapphire and Nd:YVO4 oscillators. We measured the DFG wavelengths tunable from 3.19?C3.29???m and the output power is potential to be several mW. This experiment proves a possible roadmap for ultrafast mid- and far-infrared laser radiation generation and even for the THz radiation.  相似文献   

4.
Efficient cw intracavity frequency doubling of a diode-end-pumped Nd:YAG laser operating on 4 F 3/24 I 9/2 transitions at 946 nm has been demonstrated. A symmetrical cavity with two composite laser rods was designed, which divides the pump power between the two composite laser rods, allowing for greater power scalability. A 30-mm-long LiB3O5 (LBO) crystal, cut for critical type I phase matching at 57 °C, was used for the intracavity frequency doubling of the laser. A maximum output power of 3.8 W in the blue spectral range at 473 nm has been achieved at 39 W of pump power. The beam quality M2 value is 2.3 in both horizontal and vertical dimensions. PACS 42.55.Xi; 42.65.Ky  相似文献   

5.
We present and characterize a laser system for the spectroscopy on highly charged 209Bi82+ ions at a wavelength of 243.87?nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A?sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te2 vapor at 488?nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of σ 244 nm=6.14?MHz (one standard deviation) over six days of operation.  相似文献   

6.
N. Pavel 《Laser Physics》2010,20(1):215-221
Continuous-wave (CW) simultaneous laser emission on the 0.9-μm 4 F 3/24 I 9/2 transition and the 4 F 3/24 I 11/2 transition at 1.06 μm is obtained in Nd-based laser crystals of thin-disk geometry and using a multi-pass pumping scheme. A Nd:Y3Al5O12 (Nd:YAG) thin disk emitted simultaneous laser radiation at 946 and 1064 nm with 5.1 W output power, and Nd:YVO4 and Nd:GdVO4 thin-disk lasers with more than 3 W output power at 0.91 and 1.06 μm were realized. The ratio between the output power at one of the wavelengths and the total output power could be varied by the laser resonator design. An intracavity frequency-doubled Nd:YVO4 thin-disk laser with alternate green at 532 nm and “deep-blue” at 457 nm generation of high average output powers is demonstrated.  相似文献   

7.
A high-power, continuous-wave 3.5% Tm3+ doped LiYF4 (Tm:YLF) laser has been developed. Using two Tm:YLF rods in a single cavity, 55 W of laser output at 1910 nm was obtained with a slope efficiency of 49%. The M2 factor was found to be <3. With a single Tm:YLF rod, a maximum laser power of 30 W was obtained with a slope efficiency of 50%. The laser was tuned to the peak absorption wavelength of Ho:YAG of 1907.5 nm by an intracavity quartz etalon with an output power loss < 1 W. PACS 42.55.-f; 42.55.Xi; 42.60.Pk  相似文献   

8.
We report a stable, high-power source of picosecond pulses in the near-infrared based on intracavity second harmonic generation (SHG) of a MgO:PPLN optical parametric oscillator synchronously pumped at 81 MHz by a mode-locked Yb-fiber laser. By exploiting the large spectral acceptance bandwidth for Type I (oo→e) SHG in β-BaB2O4 and a 5 mm crystal, we have generated picosecond pulses over 752-860 nm spectral range under minimal angle tuning, with as much as 3.5 W of output power at 778 nm and >2 W over 73% of the tuning range, in good beam quality with TEM00 spatial profile and M2<1.4. The SHG output pulses have durations of 15.2 ps, with a spectral bandwidth of ~3.4 nm at 784 nm. In addition, the oscillator simultaneously provides a signal power of >1 W over 1505-1721 nm (25 THz) and idler power >1.8 W over 2787-3630 nm (25 THz), corresponding to a total (signal plus idler) tuning range of 1059 nm. The SHG, signal, and idler output exhibit passive long-term power stability better than 1.6%, 1.3%, and 1.6% rms, respectively, over 14 h.  相似文献   

9.
An intracavity etalon is used to suppress the vibration of the light at 1338 nm to get a stable laser output. An acousto-optic Q-switched red laser output is obtained by intracavity frequency-doubling a Nd:YAG laser operating at 1319 nm with a type II KTP crystal. At the pump power of 300 W, an average out-put power of 6.5 W at 660 nm is measured at single-end, and the peak power is 65 kW. The stability has been kept less than ±1% in five hours.  相似文献   

10.
We report a green laser at 532 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1064 nm Nd:Y0.5Gd0.5VO4 laser under diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type-II phase matching at room temperature is used for second harmonic generation (SHG) of the laser. At an incident pump power of 17.8 W, as high as 4.21 W of cw output power at 532 nm is achieved. The optical-to-optical conversion efficiency is up to 23.6%, and the fluctuation of the green output power was better than 2.8% in the given 30 min.  相似文献   

11.
We present for the first time a dual-wavelength laser operation at 1064 and 914 nm in two NdYVO4 crystals. A 879 nm laser diode is used to pump the first Nd:YVO4 crystal emitting at 914 nm, and the second Nd:YVO4 laser emitting at 1064 nm intracavity pumped at 914 nm. A total output power of 4.28 W at the two fundamental wavelengths was achieved at the absorbed pump power of 13.8 W. The M2 values for 914 and 1064 nm lights at the maximum output power were found to be around 1.3 and 1.1, respectively.  相似文献   

12.
Wu  Y.  Zhang  X. H.  Sun  G. C. 《Laser Physics》2011,21(6):1074-1077
We report for the first time a coherent radiation at 555 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1343 nm Nd:LuVO4 laser. Yellow-green laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 31.9 W (13.7 W pump power for 1343 nm Nd:LuVO4 laser and 18.2 W pump power for 946 nm Nd:YAG laser), TEM00 mode yellow-green laser at 555 nm of 2.35 W is obtained.  相似文献   

13.
It is reported the efficient compact deep-blue laser at 457 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode-pumped YVO4:Nd laser on the 4 F 3/24 I 9/2 transition at 914 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation (SHG) of the laser. With dual end pump configurations at total incident pump power of 60 W, as high as 21.8 W of CW output power at 457 nm is achieved with 20-mm-long LBO. The optical-to-optical conversion efficiency is up to 36.3%, and the power stability in 8 h is better than 2.36%.  相似文献   

14.
We report an efficient laser emission on the 1329 nm 4 F 3/2 to 4 I 13/2 transition in Nd:CNGG under the pump with diode laser at 885 nm. Continuous wave (CW) 3.37 W output power at 1329 nm is obtained under 17.4 W of incident pump power; the slope efficiency with respect to the incident pump power was 36.2%. Moreover, intracavity frequency doubling with LiB3O5 (LBO) nonlinear crystal yielded 822 mW of red light at 665 nm. An optical-to-optical efficiency with respect to the incident pump power was 4.7%.  相似文献   

15.
Yu  X.  Li  C. L.  Sun  G. C.  Li  B. Z.  Zhang  X. H.  Jin  G. Y. 《Laser Physics》2011,21(6):1057-1060
We report for the first time a continuous wave (CW) coherent radiation at 611 nm by intracavity sum-frequency generation of 1064 nm Nd:YVO4 laser and 1433 nm Nd:YAP laser. Red-orange laser is obtained by using a doubly cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 27.9 W (17.8 W pump power for 1433 nm Nd:YAP laser and 10.1 W pump power for 1064 nm Nd:YVO4 laser), TEM00 mode red-orange laser at 611 nm of 1.15 W is obtained. The red-orange power stability in 30 min is better than 4.3%.  相似文献   

16.
In this paper, a high-power continuous-wave deep blue laser at 447 nm with intracavity tripling was achieved. The deep blue laser at 447 nm is obtained by using a doubly cavity, and type-II critical phase matching KTP crystal for intracavity sum-frequency mixing. Through designing of the cavity, the optimum matching of modes and gains for the two wavelengths was obtained. With incident pump power of 30 W for the Nd:YVO4 crystal and 16 W for the other Nd:YVO4 crystal, the deep blue laser output of 3.5 W at 447 nm with TEM00 mode was obtained, the beam quality M2 value was equal to 1.8 in both horizontal and vertical directions at the maximum output power, and the power stability is better than 3% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high-power blue laser.  相似文献   

17.
A high-power diode-side-pumped 1,105?nm Nd:GGG laser and a laser at 552?nm based on intracavity frequency doubling of 1,105?nm laser are demonstrated for the first time. A 26.8-W 1,105?nm laser continuous wave output was achieved under the incident pump power of 170?W. A LiB3O5 crystal is used for second harmonic generation of 1,105?nm laser. When the pump power was 170?W, the average output power at 552?nm of 7.3?W was obtained, corresponding to the optical conversion efficiency of 4.3?%. And the minimum pulse width is 181?ns with the pulse repetition rate of 10?kHz. The M 2 factors are measured to be 19.8 and 17.6 in the horizontal and vertical directions, respectively.  相似文献   

18.
Construction details and operating characteristics are reported for a pulsed dye laser oscillator followed by a three-stage dye laser amplifier. The system is excited with 220 mJ of the second or120 mJ of the third harmonic radiation of a Nd-YAG laser. With Rhodamine dyes the output energy exceeds 55 mJ (9 MW peak power). Coumarin dyes provide pulses of more than 15 mJ (3 MW). Spectral narrowing to less than 260 MHz or 2.7 × 10 -4 nm at 565 nm is achieved by a single intracavity etalon of 37.5 GHz free spectral range. Gas pressure tuning allows a continuous linear variation of the laser frequency over more than 3.9 × 103 GHz (4 nm at 565 nm). The frequency doubled laser output provides tunable UV light of narrow bandwidth (1.4 × 10-4 nm) and of peak powers exceeding 3 MW.  相似文献   

19.
A dual-wavelength continuous-wave (CW) diode end-pumped Nd3+:YAlO3 (Nd:YAP) laser that generates simultaneous laser action at the wavelengths 930 and 1341 nm is demonstrated. A total output power of 778 mW for the dual-wavelength was achieved at the incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 930 and 1341 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 103 mW at 549 nm.  相似文献   

20.
Using an external cavity consisting of an etalon and a mirror, dual-wavelength operation of a high-power broad-area multi-stripe diode laser is achieved. The reflection of the etalon is used as the output beam of the system. The free-running bandwidth of the laser diode is about 2.0 nm. At dual-wavelength operation, the bandwidth of each wavelength component is narrowed to about 0.07 nm, while the space between them is 1.65 nm, determined by the FSR of the etalon. We obtain an available dual-wavelength output power of 2.0 W at the drive current of 6.5 A. The power ratio of the components at two different wavelengths can be changed by changing the temperature of the diode laser. To tune the wavelength of the dual-wavelength output, the temperature of the laser diode and the tilt angle of the etalon are changed simultaneously PACS 42.55.Px; 42.60.Fc; 42.60.Da  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号