首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and Crystal Structure of the Dialkali Metal Trichalcogenides Rb2S3, Rb2Se3, Cs2S3, and Cs2Se3 Crystalline products were obtained by the reaction of the pure alkali metals with the chalcogens in the molar ratio 2:3 in liquid ammonia at pressures up to 3000 bar and temperatures around 600 K. The substances crystallize in the K2S3 type structure (space group Cmc21(NO. 36)). Unit cell constants see ?Inhaltsübersicht”?. The characteristic feature of this structure are bent polyanions X32?:(X = S,Se). The new described compounds are compared with the other known alkali metal trichalcogenides.  相似文献   

2.
Inhaltsübersicht. Die Verbindungen K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2 und Cs2MnTe2 wurden durch Umsetzungen von Alkalimetall-carbonaten mit Mangan bzw. Mangantellurid in einem mit Chalkogen beladenen Wasserstoffstrom erhalten. Kristallstrukturuntersuchungen an Einkristallen ergaben, daß alle neun Verbindungen isotyp kristallisieren (K2ZnO2-Typ, Raumgruppe Ibam). Untersuchungen zum magnetischen Verhalten zeigen antiferromagnetische Kopplungen der Manganionen in den [MnX4/22–]-Ketten, On Alkali Metal Manganese Chalcogenides A2MnX2 with A K, Rb, or Cs and X S, Se, or Te The compounds K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2, and Cs2MnTe2 were synthesized by the reaction of alkali metal carbonates with Mn or MnTe in a stream of hydrogen charged with chalcogen. Structural investigations on single crystals show that all nine compounds crystallize in isotypic atomic arrangements (K2ZnO2 type, space group Ibam). The magnetic behaviour indicates antiferromagnetic interactions of the manganese ions within the [MnX1/22–] chains.  相似文献   

3.
A recently prepared new thiotungstate has been characterized by three-dimensional X-ray structure analysis, to be a double salt, containing K2WOS3 and KCl in equimolar proportions: potassium trithiotungstate chloride, K3(WOS3)Cl. Space group: Pca21 with a = 12.507, b = 6.317, c = 12,371 Å, Z = 4. The compound represents a new structure type with stoichiometry MI2XY4 · MIZ. Besides isolated tetrahedral WOS32- ions (bond lengths W–O 1.760 Å, W–S 2.208, 2.197, 2.196 Å) the structure contains Cl? ions octahedrally co-ordinated by K+, the K+ ions having 5S + 10 + 2Cl as neighbours. The dimensions of the WOS32? ions in this compound show that, as in other transition metal oxo-, thio- and selenoanions, strong π bonding is present, the W–S bonds taking part in the π bond system.  相似文献   

4.
X-Ray Investigations and Structure Chemistry of Chalkogenomolybdates and -tungstates. II. The chalkogenomolybdates and -tungstates (NH4)2MoS3Se, (NH4)2MoS2Se2, (NH4)2MoSSe3, (NH4)2WSSe3, Cs2MoS2Se, Cs2MoS2Se, Cs2MoSSe3, Cs2WSSe3, Cs2MoOS2Se, Cs2WOS2Se, Cs2MoOSSe2, and Cs2WOSSe2 are investigated by means of X-ray powder diffractometry. All compounds crystallize orthorhombic in spacegroup D? Pnma and are isomorphous with β-K2SO4. Systematic relations between lattice constants and occupation of atomic positions in the unit cell are discussed.  相似文献   

5.
The Crystal Structure of K2S3 and K2Se3 Well formed crystals of K2S3 and K2Se3 were obtained by reaction of the elements in liquid ammonia at 500 bar and 150°C. The substances are both orthorhombic, space group Cmc21. Cell constants are: The structure contains S32?(Se32?) polyanions, with S? S? S(Se? Se? Se) angles of 105.4(102.5)°. The S? S(Se? Se) distance is 2.083(2.383) Å.  相似文献   

6.
Newly prepared are the cubic derivatives of the perovskite type of structure: K2NaInF6 (a = 8.560 Å), K2NaTlF6 (8.668), K2NaScF6 (8.482), K2NaYF6 (8.711), Cs2NaInF6 (8.905), Cs2NaTiF6 (8.995), Cs2NaScF6 (8.853), all colourless, as well as K2NaCuF6 (8.203 Å, green) and Cs2KMnF6 (tetragonal, a = 8.933; c = 9.265 Å, violett). K2NaCuF6 [μ = 2.87 μB, θ = ?17°] and Cs2KMnF6 [;μ = 4.88 μB, θ = ?5°] obey the Curie-Weiss law. The volume chemistry of the compounds is discussed in detail.  相似文献   

7.
The Antimonide Triantimonidometallates(III) Cs6K3Sb[AlSb3] and Cs6K3Sb[GaSb3] The novel compounds Cs6K3Sb[AlSb3] and Cs6K3Sb[GaSb3] are formed from stoichiometric mixtures of Cs, AlSb (GaSb) and KSb in sealed niobium ampoules at 950 K. The hexagonal structures are especially characterized by one-dimensional rod packings 1∞[Cs6K3Sb] which are formed from columns of condensed (Cs6K6/2) icosahedra. The icosahedra are centered by Sb3-? anions. The trigonal planar anions [AlSb3]6-? and [GaSb3]6-? are embedded between the icosahedra columns, and they are coordinated by alkali metal atoms. The FIR spectra were assigned to the vibrations of the [MSb3]6-? anions, with respect to the 6 m2-D3h symmetry. (P63/mmc, No. 194; a = 1101.7 and 1097.2 pm; c = 1158.9 and 1150.1 pm; Z = 2; Single crystal data: 574 and 546 reflections; R = 0.073 and 0.029. Distances:d(Al? Sb) = 265.4 pm; d(Ga? Sb) = 265.1 pm; d(Sb? Cs) = 401.6–423.0 pm; d(Sb? K) = 358.6–367.3 pm).  相似文献   

8.
The Crystal Structure of Cs2S and a Remark about Cs2Se, Cs2Te, Rb2Se, and Rb2Te Cs2S crystallizes orthorhombic, a = 8.571, b = 5.383, c = 10.39 Å, Z = 4, d = 4.13, dpyk = 4.19 g · cm?3, D–Pnma with \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|,\mathop {{\rm Cs}}\limits^\parallel $\end{document} and S in 4(c) each, for parameter see text. It is R = 10,4% for 202 of 222 possible reflexes. There is a sequence of S2? corresponding to the hexagonal closest packing of sphares. Cs occupies half of “tetrahedron” and all “octahedron vacancies”; the deviation of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|, $\end{document} in ?oktahedron vacancies”? is noticeable. Effective Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, are calculated and discussed.  相似文献   

9.
The electron transfer, i. r., RAMAN and photoelectron spectra and the powder diagrams of Tl2MO2S2, TI2MOS3 Tl2MS4 (M = Mo, W) and, in comparison, the photoelectron spectra of some other transition metal compounds The electron transfer, i. r., RAMAN and photoelectron spectra and the powder diagrams of Tl2MoO2S2, Tl2WO2S2, Tl2MoOS3, Tl2WOS3, Tl2MoS4 and Tl2WS4 are reported and discussed. The different methods allow a discussion of the strong polarising effect of the Tl(I) cation on the anions. For the purpose of comparison the photoelectron spectra of the salts Tl3MX4 (M = V, Nb, Ta; X = S, Se); Tl2MO4 (M = Mo, W); Cs2MX4, (M = Mo, W; X = S, Se) and other similar salts were also measured.  相似文献   

10.
Novel Chalkogeno Metallates of the Type A (MVIOS3)SH and AI[MVIS3(SH)] (M = Mo, W) The preparation and properties of the salts K3(MoOS3)SH and K3(WOS3)SH are reported. The compounds contain isolated MOS32? anions in the lattice and are considered as double salts. They are crystallizing orthorhombic in the space group Pmn21-C2v7 with two formulae per unit cell (for data see Inhaltsübersicht). A preparation of pure tetraphenylphosphonium- and -arsoniumhydrogenthiotungstate the first known hydrogenthio salts is given. The salts are characterized by means of vibrational and electronic spectrosocopy, molecular weight determination, and X-ray data.  相似文献   

11.
On Oxostannates(II). III. K2Sn203, Rb2Sn203, and Cs2Sn2O3 – a Comparison Hitherto unknown Rb2Sn2O3 has been obtained by heating of mixtures of binary oxides [RbO0.48 + SnO, Rb:Sn = 1.1:1, Al2O3?cylinders, Ar] as deep yellow powder or deep yellow single crystals. It is isotypic to K2Sn2O3, R3 m-D with a = 6.086 Å, c = 15.101 Å, Z = 3, dcalc = 4.69, dobs = 4.64 g X cm?3. For 260 hkl it is R = 5.27% and Rw = 5.09% (MoKα, 4-circle diffractometer data). The structure of K2Sn2O3 and Rb2Sn2O3 is compared with that of Cs2Sn2O3. For both types Effektive Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, have been calculated.  相似文献   

12.
Transition Metal Chalkogen Compounds. Preparation, I.R. spectra, Raman Spectra, and X-Ray Investigations on Compounds of the Type A3(MeOS3)CI and A2 MeOS3(A = K, Rb; Me = Mo, W) The preparation, vibrational spectra, and x-ray data of compounds of the type A3(MeOS3)Cl and A2MeOS3 (A = K, Rb; Me = Mo, W) are reported. K3(MoOS3)Cl, K3(WOS3)Cl, and Rb3(WOS3)Cl are novel salts which can be prepared by passing H2S through strong alcaline aqueous MoO and WO solutions containing KCl or RbCl. The salts crystallize in space group Pca21? C (No. 29) (Z = 4) with discrete MeOS tetrahedrons. The compounds A2MeOS3 (A = K, Rb; Ne = Mo, W) which are in part precipitable only by addition of organic solvents crystallize in space group Pnma? D (No. 62) with four formula units per unit cell.  相似文献   

13.
Cs3AsGeSe5 and Cs4Ge2Se6 can be prepared by methanolothermal reaction of elemental As, Ge and Se with Cs2CO3 at 190 °C. The former quaternary phase contains zweier [{AsGeSe5}3?] chains consisting of corner‐bridged GeSe4 tetrahedra and AsSe3 pyramids and represents the first GeIV‐AsIII chalcogenidometalate. Cs4Ge2Se6 exhibits discrete [Ge2Se6]4? anions formed by two edge‐sharing GeSe4 tetrahedra.  相似文献   

14.
On Oxoniccolates(II) of Alkali Metals: K2NiO2, Rb2NiO2, and Cs2SiO2. The hitherto unknown K2NiO2 (dichroic single crystals: redviolet/green, a=3.953, c=12.853 Å), Rb2NiO2 (analogous yellowred/green, a=4.174, c=13.186 Å) and Cs2NiO2 (analogous: darkgreen/green, a=4.413, c=13.590 Å) have been obtained, which surprisingly crystallize in the tetragonal Na2HgO2-type of structure with [O–-Xi –-O]-dump-bells. The distance Ni –-O is very short: 1.68 Å. The K2SiO2-structure was determined using single crystal data, R=7.98% and R′=10.6% for 131 reflections hhl–- (h+3)hl. The magnetic datas for K2NiO2 and Cs2NiO2 obey the CURIE -WEISS -law (μ=3,0 μB. Θ ? ?30°K). The Madelung Part of Lattice Energy (MAPLE) is calculated and discussed.  相似文献   

15.
On Oxostannates(II). II. On the Knowledge of Cs2Sn2O3 Cs2Sn2O3 has been prepared for the first time by heating of mixtures of CsO0.46 and SnO with Cs:Sn = 1.0:1 [under Argon, Al2O3 or Ag cylinders, 480°C, 3 d or 18 d as pale light yellow powder or light yellow transparent single crystals, respectively]. According to four-circle-diffractometer data [955 of 1199 I0(hkl), Mo-Kα, not corrected for absorption, R = 8.17%, Rw = 7.97%] the compound crystallizes in Pnma with a = 13.708; b = 6.098; c = 8.921 Å, Z = 4, dpyk = 4.84 g · cm?3, dcalc = 4.91 g · cm?3. Parameters see text. Cs2Sn2O3 has a layer structure like K2Sn2O3 but with an undulated instead of a flat O3 part of the structure and different coordination of Cs versus O.  相似文献   

16.
Synthesis and Crystal Structure of the known Zintl Phases Cs3Sb7 and Cs4Sb2 Cs3Sb7 and Cs4Sb2 were synthesized from the elements and their crystal structures were determined on the basis of single crystal x‐ray data. Cs3Sb7 crystallizes in the monoclinic system with space group P21/c (a = 1605.7(1) pm, b = 1571.1(1) pm, c = 2793.9(2) pm, β = 96.300(2)°, Z = 16) and contains anions Sb73–. In the structure of Cs4Sb2 (orthorhombic, space group Pnma, a = 1598.5(3) pm, b = 631.9(2) pm, c = 1099.5(2) pm, Z = 4) dumbbells Sb24– are present.  相似文献   

17.
Cs2(H3O)Pr(CH3COO)6 and Cs2Pr(CH3COO)5: Synthesis, Crystal Structures and Thermolysis. Analogous Acetates with Lanthanum through Terbium Single crystals of Cs2(H3O)Pr(CH3COO)6 are obtained as green plates from an acetic acid solution (≈50%) of Cs2CO3 and Pr(CH3COO)3 · 1,5 H2O. The crystal structure monoclinic, Cm, Z = 2, a = 1 540.4(4), b = 691.3(2), c = 1 221.5(4) pm, β = 104.60(5)°, Vm = 379.1(2) cm3/mol, R = 0.040, Rw = 0.035 was determined from four-circle-diffractometer data. The structure consists of monomeric Pr(CH3COO)3 units, in which Pr3+ is surrounded by nine oxygen atoms. These monomers are linked together to infinite layers parallel (001) by common acetate oxygen atoms with two ?molecules”? of Cs(CH3COO). Together with an additional acetate ion coordinated to one of the Cs+ ions the composition of the layers is [Cs2Pr(CH3COO)6]?. Between these layers H3O+ is located for electroneutrality. Thermal decomposition of Cs2(H3O)Pr(CH3COO)6 was examined with thermoanalytical methods (TG/DTA with coupled gas analysis), Guinier-Simon technique and IR spectroscopy: beginning at 70°C the compound looses water and acetic acid. It decomposes topotactically to Cs2Pr(CH3COO)5. At 270°C this acetate decomposes to Cs2CO3 and Pr2O2CO3 which emits CO2 at 600°C form ing Pr2O3or PrO2?x Single crystals of Cs2Pr(CH3COO)5 were obtained from Pr(CH3COO)3, in molten Cs(CH3COO) at about 200°C. The crystal structure tetragonal, P43, Z = 4, a = 1 174,5(2), c = 1 480,5(3) pm, Vm = pin,307,5(1) cm3/mol, R = 0,061, Rw= 0,031 again consists of Pr(CH3COO)3, monomers where Pr3+ has 9 oxygen ligands in its first coordination sphere. They are linked together by two ”molecules“ of cesium acetate to infinite chains along [00l] around the 4, screw axis. There are also acetate bridges between these chains. Isotypic compounds Cs2(H3O)M(CH3COO)6 and Cs2M(CH3COO)5, and Cs2M(CH3COO)5with M = La? Tb, were obtained from acetic acid solutions or thermal decomposition and were characterized by X-ray Guinier techniques.  相似文献   

18.
Cs2Au2Se3 was obtained as red platelike crystals by reacting a stoichiometric mixture of Cs2Se, Au and Se at 670K. It crystallizes in space group C2/c, Z = 4 with a = 9.769(5) Å, b = 13.44(1) Å, c = 7.178(3) Å, β = 90.69(1)°. The crystal structure was determined from single crystal data and refined to a conventional R of 0.042 for 674 Fo's and 34 variables. The characteristic structural feature of this new selenoaurate is the formation of infinite helical anionic chains, 1-[AuSeAuSe2]2− which run parallel to [001] and are separated by the alkali cations. The average Au-Se bond length is 2.402 Å, the bond length in the Se2-unit is 2.436 Å. Au…Au contacts of 3.200 Å, are formed within the anionic chains. The cesium atoms are coordinated to seven Se in an irregular configuration.  相似文献   

19.
Tetragonal Fluoroperovskites AM0,750,25F3 Deficient in Cations: K4MnIIM2IIIF12 and Ba2Cs2Cu3F12 By heating 2KMnF3 + K2MnF6 and BaF2, CsF + CuF2 respectively, the isostructural tetragonal compounds K4Mn3F12 (a = 832.2, c = 1643.0 pm) and Ba2Cs2Cu3F12 (a = 854.1, c = 1704.1 pm) were prepared. They crystallize in a cation-deficient perovskite structure exhibiting ordering of octahedral vacancies. Single crystal structures determinations in the space group I41/amd, Z = 4, yielded the following average distances within the octahedra, which are Jahn-Teller distorted for MnIII and CuII:MnII? F = 208.3 pm, MnIII? F = 4 × 183.0/2 × 209.7 pm; Cu? F = 190.7/227.1 and 190.6/236.4 pm, respectively. The results are discussed in comparison with related compounds.  相似文献   

20.
CS2 forms with BaSe in aqueous solution the compound BaCS2Se. The reaction of CSe2 with BaS leads to mixed crystals of BaCSSea and BaCSe3. The compounds were investigated by chemical, X-ray and IR-spectroscopical methods. Assignments of all normal vibrations of the ions CS2Se2- and CSSe were possible. The conductivity of CS2Se2- in aqueous solution was determine. By interaction of BaCS2Se with HCl the acid H2CS2SE (red oil) was prepared in form of its S, Se-protonated isomer; fast decomposition to H2 Se and CS2 occurs. From conductivity measurements it is concluded that the decomposition of H2CS2Se in aqueous solution is a first-order reaction via the anion HCS2Se?. Half-lifes and activation energy are given. The dissociation constants Ka1 and Ka2 were determind and thermodynamic data of the dissociation calculate. Date see ?Inhaltsübersicht”?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号