首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Vinyl acetate was polymerized at high initiation rate with 2,2′-azobis(2,4-dimethyl valeronitrile) as initiator at 50°C. In this polymerization, the power dependence of polymerization rate on the initiation rate is smaller than at lower concentration of monomer. This dependence was kinetically analyzed at each given concentration of monomer. Average degree of polymerization of polymer formed depends on the concentration of initiator. This dependence was explained by considering chain and primary radical terminations and transfer to monomer of polymer radical, and the initiator efficiency (=0.503) was deduced. It was found that the chain termination is inversely proportional to solvent viscosity, but the primary radical termination is not inversely proportional to solvent viscosity. Further, the value of the primary radical termination rate constant (=1.4 × 109l./mole-sec) was estimated.  相似文献   

2.
An emulsion polymerization system with uniform continuous addition of vinyl acetate monomer, Pluronic F68 surfactant, and persulfate initiator has been examined with variation of the surfactant concentration over a tenfold range. The particle surface area per unit weight of emulsion was found to vary directly as the surfactant/monomer ratio, as also did the emulsion viscosity. At constant polymer/emulsion weight the number of particles per unit emulsion weight varied directly as the cube of the surfactant concentration. It is shown that these relationships apply also to other monomers, such as styrene and methacrylate esters. The solubility of vinyl acetate in a range of Pluronic F68 aqueous solutions was determined, and it was shown that the rate of polymerization is dependent on the solubility of the monomer in the surfactant solution. It is concluded that when a water-soluble initiator is used, polymerization proceeds in the aqueous phase. The principal factors controlling the rate of polymerization in the emulsion polymerization of vinyl acetate are, consequently, the initiating system and the concentration of monomer in the aqueous phase. Solubilization characteristics indicate that the surfactant concentration will have a much greater effect on the less water-soluble monomers, such as styrene, than on the more soluble ones, such as vinyl acetate.  相似文献   

3.
In polymerization with primary radical termination, when reaction between primary radicals, which escape from solvent cage, is not negligible, a relation between chain length and polymerization rate is found regardless of tractable approximate procedures. Such a relation is applied to the kinetic data obtained in the polymerizations of methyl methacrylate (MMA) and vinyl acetate (VA) initiated by 2,2′-azobis(2,4-valeronitrile) at 50.0°C. Further, when the primary radical termination is high, an initiator efficiency can not be approximated to a ratio of the primary radicals escaping from the cage to the total primary radicals formed in the cage. In the polymerization of MMA, after the primary radicals escapes from the cage, they immediately react with the monomer. Thus, the reaction between the primary radicals is not significant. However, in the polymerization of VA, the rate of reaction between the primary radical and the monomer might be comparable to the rate of reaction between the primary radicals when the initiator concentration is quite high.  相似文献   

4.
The effect of the monomer/water ratio on the rate of polymerization per polymer particle in both seeded emulsion polymerizations and miniemulsion polymerizations was used in an attempt to elucidate the main locus of radical formation in emulsion polymerization initiated by an oil-soluble initiator (AIBN). It was found that, for the rest of conditions constant, the polymerization rate per polymer particle increased when the monomer/water ratio increased, namely when the amount of initiator dissolved in the aqueous phase per polymer particle decreased. This is an evidence against a dominant aqueous phase formation of radicals. On the other hand, these results are consistent with a mechanism in which the radicals are mainly produced in the oil-phase with significant aqueous phase termination.  相似文献   

5.
A soluble polymer of cyclic structure has been obtained by radical polymerization of diallyleyanamide. A kinetic analysis of the polymerization indicated that the overall rate of the system is first-order with respect to concentration of initiator and either first- or second-order with respect to monomer concentration, depending on the solvent used. The molecular weight of the polymer is independent of the concentration of the initiator and the monomer. The intramolecular abstraction of hydrogen is proposed as a termination reaction.  相似文献   

6.
The initial stages of the free radical polymerization of diethylene glycol bis(allyl carbonate) at temperatures of 35–65°C have been studied. The polymer is unsaturated and cyclization to give a 16-membered ring occurs only to a small extent. The kinetic order with respect to the initiator, di-sec-butyl peroxydicarbonate, has an average value of 0.79; the order increases slightly with peroxydicarbonate concentration over the range 0.018–0.22M. The molecular weight of the polymer isolated after 3% polymerization is close to 19,000. It shows no significant dependence on initiator concentration or on temperature. The dominant feature of the bulk polymerization, as in free radical polymerization of the other allyl and diallyl monomers, is degradative chain transfer in which the growing polymer radical abstracts a hydrogen atom from a monomer unit to give a relatively unreactive allylic radical. The dependence of rate on initiator concentration is rationalized if some of these allylic radicals are able to reinitiate polymerization. The transfer constant to monomer is 0.014 at 50°C, assuming that the main termination step involves mutual termination of allylic radicals. Carbon tetrachloride is an active transfer agent with a transfer constant of 0.20 ± 0.04 at 50°C. Toluene, which is less active, has a transfer constant of 0.0064 at 50°C and also retards the polymerization. Some kinetic studies have been made with other initiators, including di-2-methyl-pentanoyl peroxide which initiates polymerization at temperatures as low as 13°C.  相似文献   

7.
Trisubstituted ethylene, ethyl α-cyanocinnamate, is readily copolymerized with vinyl acetate by a conventional radical initiator. Terminal, penultimate, and “complex” copolymerization models were applied by using the data of composition of the copolymers obtained in bulk and by copolymerization in benzene, ethyl acetate, and chloroform. The model based on the participation of the monomer complexes describes satisfactorily the deviation from the terminal copolymerization model. The proton NMR analyses of the monomer mixtures indicate that the interaction between the monomers leads to the formation of weak monomer complexes. Kinetic studies of the initial rate dependence on the total monomer concentration and monomer feed composition enabled us to evaluate the degree of participation of the free uncomplexed monomers and the monomer complex in the propagation reactions. The contribution of the complexed monomers in the propagation stages increases with the increase in total monomer concentration. The initial rate of the copolymerization is proportional to the square root of the initiator concentration, thus confirming the bimolecular termination of the macrochains. The rate constants of the addition reactions of the complex and free monomers were evaluated from the kinetic studies. The quantitative kinetic treatment provided information regarding the relative weight of the termination reaction and indicated that the termination in the system occurs predominantly by the cross-termination reaction between two growing polymer radicals with different kinds of monomer units at the ends. Additional information on the termination in this system was obtained from viscosity measurements.  相似文献   

8.
In order to clarify the kinetic role of oil‐soluble initiators in microemulsion polymerization, the oil‐in‐water (O/W) microemulsion polymerizations of styrene are carried out using four kinds of azo‐type oil‐soluble initiators with widely different water‐solubility. The results are compared with those observed when a water‐soluble initiator, potassium persulfate (KPS) is used. For all the oil‐soluble initiators used, the molecular weight of polymers and the average size of polymer particles do not change with the monomer conversion and the initial initiator concentration. The monomer conversion is expressed as a function of ri0.5t, where ri is the rate of radical generation in the whole reaction system and t is the reaction time. These characteristics are quite the same as those observed when KPS is used as an initiator. When the polymerizations are carried out with the rate of radical generation in the whole reaction system fixed at the same value, the rates of polymerization are almost the same for all the oil‐soluble initiators employed, irrespective of their water‐solubility, but are significantly lower (ca. 1/3) than that with KPS. Then, the following conclusions are given: (1) The radicals generated not only in the aqueous phase, but also in the micelle and polymer particle phase are almost equally effective for the polymerization. However, (2) only a small portion (ca. 1/9) of the radicals generated in both phases participate in the polymerization. (3) Bimolecular termination of a growing radical in the polymer particle with an entering radical and with a pair of radicals generated in the polymer particles is negligible, and hence, the molecular weight of polymers is determined only by chain transfer to monomer.  相似文献   

9.
Anionic polymerization of methyl methacrylate (MMA) initiated by lithium tert-butoxide (t-BuOLi) was investigated in different mixtures of benzene and piperidine. The latter compound activates the associated alkoxide, as evidenced by the observed increase in the rate of polymerization, proportional to piperidine concentration and also by the lowering of the overall kinetic order of the polymerization reaction with respect to initial monomer concentration. However, at higher piperidine concentration the rate of the polymer growth significantly decreases after a short period of time; a probable reason for this retardation or termination effect is the decay of active growth centers by a termination reaction with the methacrylate carbonyl group. The molecular weight of the polymer is significantly lowered by even a small addition of piperidine as a result of increased initiator efficiency that leads to a higher absolute concentration of active centers and approaches the theoretical limit given by the stoichiometric ratio of monomer and initiator concentrations. The microstructure of the product is affected by the presence of the polar solvent to a considerably lesser degree than in the case of classical alkylmetal initiators. The isotacticity slowly decreases with piperidine concentration over the whole investigated range. The high stability of the complex active center of growth formed by the alkoxide initiator and also the gradual change in the character of the ionic pair at the end of the growing polymer chain are responsible for the relatively small changes of the microstructure.  相似文献   

10.
A model is presented for the simulation of the structuration of polymer particles under conditions in which the new polymer chains are compatible with the polymer previously formed. The model involves the calculation of the monomer concentration gradients within the particles due to discrepancies in thermodynamic interactions between the monomer and the different polymers present in each part of the polymer particle. In addition, the distribution of free radicals in the latex particle is taken into account. This distribution results from the anchoring of the hydrophilic end-group of the growing polymer chain on the surface of the particle. The model was applied to the simulation of the polymerization of vinyl acetate on a butyl acrylate–vinyl acetate copolymer seed. It was found that the development of the particle morphology was mainly due to the profile of concentration of radicals in the particle. On the other hand, the effect of the monomer–polymer thermodynamic interactions on the particle morphology was found to be negligible. However, it has to be pointed out that this is because, for the system studied, the interaction parameters of vinyl acetate with polyvinyl acetate and polybutyl acrylate are nearly identical.  相似文献   

11.
通过比较在大水油比下的甲基丙烯酸甲酯 (MMA)悬浮均聚的实验数据以及本体聚合实验结果 ,发现单体的水溶性对其聚合动力学有影响 ,不能用本体聚合动力学代替其悬浮聚合动力学 .为了能更好了解单体的水溶性对其悬浮聚合动力学的影响以及影响动力学的原因 ,在MMA本体聚合动力学模型基础上 ,进一步提出 3个假设 :扣除溶于水相部分的单体量、增长和终止速率参数降低、少部分的油溶性引发剂被带到水相中 ,得到改进的悬浮聚合动力学模型 .运用该模型能很好预测水油比、聚合温度、引发剂浓度等对MMA悬浮聚合动力学的影响 ,且与实验数据能较好吻合  相似文献   

12.
In tetrahydrofuran, with Na+ as counter-ion, the anionic polymerization of acrolein involves numerous transfer reactions to monomer and to polymer; on the other hand, termination of growing chains does not occur. The use of initiators, like carbanions or oxanions, does not affect the polymerization rate. The kinetic order of the reaction is unity for monomer and unity for initiator; these results indicate that the living ends are not associated at the studied concentrations of initiator. Without stating precisely the mechanism of the transfer reactions, we have proposed a kinetic scheme.In tetrahydrofuran, with Na+ as counter-ion, the anionic polymerization of acrolein involves numerous transfer reactions to monomer and to polymer; on the other hand, termination of growing chains does not occur. The use of initiators, like carbanions or oxanions, does not affect the polymerization rate. The kinetic order of the reaction is unity for monomer and unity for initiator; these results indicate that the living ends are not associated at the studied concentrations of initiator. Without stating precisely the mechanism of the transfer reactions, we have proposed a kinetic scheme.  相似文献   

13.
Cyclohexanone oxime was employed as an oxidant in combination with Vanadium (III) as a redox initiator system for the polymerization of AN and MMA. Kinetics were investigated in aqueous sulphuric acid medium and mechanisms for oxidation and polymerization were proposed. Michaelis–Menten kinetics were evident from the rates of oxidation with protonation of oxime being the noncompetitive complexation. A mechanism involving monomer in the initiating radical production step and mutual termination of growing radicals was proposed to account for the fractional orders in the initiator concentration and the monomer exponents higher than unity.  相似文献   

14.
ESR measurements of transient radicals during redox polymerization of various vinyl esters in aqueous solutions have been made by using the rapid-mixing flow method. The initiation was by means of hydroxyl and amino radicals from the systems titanous chloride-hydrogen peroxide and titanous chloride-hydroxylamine, respectively. The well resolved hyperfine structures obtained at monomer concentrations of about 0.05 mole/1. are unambiguously assigned to the monomer radicals formed by addition of initiator radicals to monomers. At higher monomer concentrations, additional weak signals attributed to the growing polymer radicals were observed. The effect of reaction conditions on the signal intensity has been studied in particular for vinyl acetate. The coupling constants of monomer radicals from various vinyl esters (acetate, propionate, butyrate, crotonate, and isopropenyl acetate) were obtained and the spin densities calculated. From the ESR spectra, the monomer radicals have a conformation with the substituent R (R = HO or NH2) of R? CH2? CH(OCOR′) locked in a position above or below the radical plane. This is tentatively interpreted as due to formation of intramolecular hydrogen bonds to ring structures or complexes with titanium ions. In addition, hydrogen abstraction reactions of some model compounds for poly(vinyl acetate) have been briefly studied in relation to chain transfer and grafting reactions.  相似文献   

15.
The kinetic behavior of the 60Co-initiated copolymerization at 25°C of styrene with vinyl acetate at 1100 and 2000 rad/hr was studied. As in the case of thermal and photochemical copolymerizations of these monomers, the growing chains are particularly rich in styrene units, and the overall rate is affected by a diluent effect due to the vinyl acetate monomer. However, in the case of the radiation copolymerization, this effect is partially counterbalanced by an increase of the initiation rate with the vinyl acetate concentration; the polymerization rate curve shows a maximum at a vinyl acetate molar fraction of 0.25. This effect is due to the very different free radical yields of these two monomers. The experimental results may be understood on the basis of a kinetic scheme which involves an energy transfer process from the excited vinyl acetate molecules to the styrene monomer and a termination reaction of the growing chains by very short styrene radicals when the mixture is rich in vinyl acetate.  相似文献   

16.
许文静  张文生  闫金龙  李伟  申国玉 《应用化学》2011,28(10):1143-1147
在醋酸乙烯酯的普通自由基聚合体系中加入少量碘(质量分数为0.57%~0.86%),用偶氮二异丁腈作引发剂合成聚醋酸乙烯酯,对其聚合反应的动力学及反应机理进行了研究。 考察了碘质量分数对聚合反应速率、聚合物分子量及分子量分布的影响,发现随着碘浓度的增加,聚合物分子量及分子量分布得到更好的控制;对聚合过程进行了核磁跟踪,考察了聚合过程中几种化合物的变化情况,特别是初级自由基与碘生成的加合物A-I(A来自引发剂分裂后产生的自由基)及单体加合物A-Mn-I(M代表单体单元)的变化情况;对聚合物结构作了详细的1H NMR分析,结果表明,聚合过程中分子量随时间延长而逐渐增大,分子量分布随单体转化率增加而变窄,聚合终期,单体转化率达到80%左右时,所得聚合物分子量分布窄(Mw/Mn≤1.41),且含有碘端基。该方法的自由基聚合具有活性/可控的性质。  相似文献   

17.
18.
The preparation of poly(vinyl acetate) with well-controlled structure has received a great deal of interest in recent years because of a large number of developments in living radical polymerization techniques. Among these techniques, the use of reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization has been employed for the controlled polymerization of vinyl acetate due to the high susceptibility of this monomer towards chain transfer reactions. Here, a novel water-soluble N,N-dialkyl dithiocarbamate RAFT agent has been prepared and employed in the emulsion polymerization of vinyl acetate. The kinetic results reveal that the polymerization nucleation mechanism changes from homogeneous to micellar and RAFT-generated radicals can change the kinetic behavior from conventional emulsion polymerization to living radical polymerization. At higher concentrations of the modified RAFT agent, as a result of an aqueous phase reaction between RAFT and sulfate radicals, relatively more hydrophobic radicals are generated, which favors entry and propagation into micelles swollen with monomer. This observation was determined from the investigation of the polymerization rate and measurements of the average particle diameter and the number of particles per liter of the aqueous phase. Molecular weight analysis also demonstrated the participation of the RAFT agent in the polymerization in such a way as to restrict chain transfer reactions. This was determined by examining the evolution of polymer chain length and attaining higher molecular weights, even up to 50?% greater than the samples obtained from the conventional emulsion polymerization of vinyl acetate in the absence of the synthesized modified RAFT agent.  相似文献   

19.
无乳化剂乳液聚合法合成单分散大粒径高分子微球的研究   总被引:16,自引:0,他引:16  
无乳化剂乳液聚合法合成单分散大粒径高分子微球的研究朱世雄杜金环金熹高陈柳生(中国科学院化学研究所北京100080)关键词无乳化剂乳液聚合,单分散,均相成核,低聚物胶束微米级大粒径单分散高分子微球在标准计量、情报信息、分析化学等许多领域都有广泛的...  相似文献   

20.
A kinetic model has been developed for atom transfer radical polymerization processes using the method of moments. This model predicts monomer conversion, number‐average molecular weight and polydispersity of molecular weight distribution. It takes into account the effects of side reactions including bimolecular radical termination and chain transfers. The determining parameters include the ratios of the initiator, catalyst and monomer concentrations, as well as the ratios of the rate constants of propagation, termination, transfer and the equilibrium constant between radicals and their dormant species. The effects of these parameters on polymer chain properties are systematically simulated. The results show that an ideal living radical polymerization exhibiting a linear relationship between number‐average molecular weight versus conversion and polydispersity approaching unity is only achievable under the limiting condition of slow monomer propagation and free of radical termination and transfers. Improving polymerization rate usually accompanies a loss of this linearity and small polydispersity. For polymerization systems having a slow initiation, the dormant species exercise a retention effect on chain growing and tend to narrow the molecular weight distribution. Increasing catalyst concentration accelerates the initiation rate and thus decreases the polydispersities. It is also shown that for a slow initiation system, delaying monomer addition helps to reduce the polydispersities. Radical termination and transfers not only slow down the monomer conversion rates but also broaden polymer molecular weight distributions. Under the limiting conditions of fast propagation and termination and slow initiation, the model predicts the conventional free radical polymerization behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号