首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On Novel Hexafluoro Rhodates(IV): AIIRhIVF6. (AII = Ba, Sr, Ca, Mg, Zn, Cd, Hg, Ni, Cu) We obtained hithertoo unknown BaRhF6 and SrRhF6 (both lemon yellow) of (hexag.) BaSiF6?Type [a = 7.379, c = 7.211Å bzw. a = 7.157, c = 6.948 Å] as well as CaRhF6 (light yellow) [a = 5.267, c = 14.612 Å], MgRhF6 (light yellow) [a = 5.027, c 13.511Å], ZnRhF5 (light yellow) [a = 4.996, c = 13.683 Å], CdRhF6 (light yellow) [a = 5.,128 c = 14.447 Å], HgRhF6 (orange) [a = 5.133, c = 14.676 Å], NiRhF6 (light brown) [a = 4.960, c = 13.514 Å] all of (hexag.) LiSbF6?type. The strukture of CuRhF6 (light brown) is yet unknown.  相似文献   

2.
Ternary fluorides with tetravalent chromium: MIICrF6 with MII = Ba, Sr, Ca, Mg, Zn, Cd, Hg, Ni. We obtained hithertoo unknown BaCrF6 (light yellow) and SrCrF6 (yellow), both of (hexag.) BaSiFB-type [a = 7.328, c = 7.137 Å; and a = 7.109 c = 6.863 Å, respectively] as well as CaCrF6 (pink) [a = 5.336, c = 14.153 Å], MgCrF6 (pink) [a = 5.091 c = 13.143 Å], CdCrF6 (pink) [a = 5.146, c = 14.075 Å] and HgCrF6 (orange-yellow) [a = 5.128, c = 14.265 A], all of (hexag.) LiSbF6-type. NiCrF6 (brown) [a = 4.975, c = 13.262 Å] and ZnCrF6 (orange-yellow) [a = 5.026, c = 13.337 Å] crystallize in the hexag. VF3-type.  相似文献   

3.
On New Hexafluoroplatinates(IV) New prepared are PbPtF6 (light yellow), hex. BaGeF6-Type, [a = 7.227, c = 7.071 Å]; CaPtF6 (light yellow) [a = 5.245, c = 14.784 Å]; ZnPtF6 (light yellow) [a = 4.980, c = 13.828 Å]; CdPtF6 (light yellow) [a = 5.118, c = 14.623 Å]; HgPtF6 (light yellow) [5.132, c = 14.814 Å]; MnPtF6 (ocker) [a = 5.094, c = 14.231 Å], CoPtF6 (light brown) [a = 5.002, c = 13.815 Å]; NiPtF6 (egg yellow) [a = 4,937, c = 13.687Å], all these of hex. LiSbF6-structure. The structure of CuPtF6 (light yellow) is yet unknown.  相似文献   

4.
Mesityl‐vanadium(III)‐phenolate Complexes: Synthesis, Structure, and Reactivity Protolysis reactions of [VMes3(THF)] with ortho‐substituted phenols (2‐iso‐propyl‐(H–IPP), 2‐tert‐butyl(H–TBP), 2,4,6‐trimethylphenol (HOMes) and 2,2′biphenol (H2–Biphen) yield the partially and fully phenolate substituted complexes [VMes(OAr)2(THF)2] (OAr = IPP ( 1 ), TBP ( 2 )), [VMes2(OMes)(THF)] ( 4 ), [V(OAr)3(THF)2] (OAr = TBP ( 3 ), OMes ( 5 )), and [V2(Biphen)3(THF)4] ( 6 ). Treatment of 6 with Li2Biphen(Et2O)4 results in formation of [{Li(OEt2)}3V(Biphen)3] ( 7 ) and with MesLi complexes [{Li(THF)2}2VMes(Biphen)2] · THF ( 8 ) and [{Li(DME)}VMes2(Biphen)] ( 9 ) are formed. Reacting [VCl3(THF)3] with LiOMes in 1 : 1 to 1 : 4 ratios yields the componds [VCl3–n(OMes)n(THF)2] (n = 1 ( 5 b ), 2 ( 5 a ), 3 ( 5 )) and [{Li(DME)2}V(OMes)4] ( 5 c ), the latter showing thermochromism due to a complexation/decomplexation equilibrium of the solvated cation. The mixed ligand mesityl phenolate complexes [{Li(DME)n}{VMes2(OAr)2}] (OAr = IPP ( 10 ), TBP ( 11 ), OMes ( 12 ) (n = 2 or 3) and [{Li(DME)2}{VMes(OMes)3}] ( 15 ) are obtained by reaction of 1 , 2 , 5 a and 5 with MesLi. With [{Li(DME)2(THF)}{VMes3(IPP)}] ( 13 ) a ligand exchange product of 10 was isolated. Addition of LiOMes to [VMes3(THF)] forming [Li(THF)4][VMes3(OMes)] ( 14 ) completes the series of [Li(solv.)x][VMes4–n(OMes)n] (n = 1 to 4) complexes which have been oxidised to their corresponding neutral [VMes4–n(OMes)n] derivatives 16 to 19 by reaction with p‐chloranile. They were investigated by epr spectroscopy. The molecular structures of 1 , 3 , 5 , 5 a , 5 a – Br , 7 , 10 and 13 have been determined by X‐ray analysis. In 1 (monoclinic, C2/c, a = 29.566(3) Å, b = 14.562(2) Å, c = 15.313(1) Å, β = 100.21(1)°, Z = 8), 3 (orthorhombic, Pbcn, a = 28.119(5) Å, b = 14.549(3) Å, c = 17.784(4) Å, β = 90.00°, Z = 8), ( 5 ) (triclinic, P1, a = 8.868(1) Å, b = 14.520(3) Å, c = 14.664(3) Å, α = 111.44(1)°, β = 96.33(1)°, γ = 102.86(1)°, Z = 2), 5 a (monoclinic, P21/c, a = 20.451(2) Å, b = 8.198(1) Å, c = 15.790(2) Å, β = 103.38(1)°, Z = 4) and 5 a – Br (monoclinic, P21/c, a = 21.264(3) Å, b = 8.242(4) Å, c = 15.950(2) Å, β = 109.14(1)°, Z = 4) the vanadium atoms are coordinated trigonal bipyramidal with the THF molecules in the axial positions. The central atom in 7 (trigonal, P3c1, a = 20.500(3) Å, b = 20.500(3) Å, c = 18.658(4) Å, Z = 6) has an octahedral environment. The three Li(OEt2)+ fragments are bound bridging the biphenolate ligands. The structures of 10 (monoclinic, P21/c, a = 16.894(3) Å, b = 12.181(2) Å, c = 25.180(3) Å, β = 91.52(1)°, Z = 4) and 13 (orthorhombic, Pna21, a = 16.152(4) Å, b = 17.293(6) Å, c = 16.530(7) Å, Z = 4) are characterised by separated ions with tetrahedrally coordinated vanadate(III) anions and the lithium cations being the centres of octahedral and trigonal bipyramidal solvent environments, respectively.  相似文献   

5.
Two new trans‐disubstituted cyclam ligands; 1,8‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11‐tetra‐azacyclotetradecane ( 5 ) and 1,8‐dimethyl‐4, 11‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11 ‐tetraaza‐cyclotetradecane ( 6 ); have been synthesized and characterized. The crystal structures of ligand 6 and its Ni(II) and Co(II) complexes have been determined. Crystal data are given for 6 , space group, P21/c, a = 11.095 (6) Å, b = 9.467 (5) Å, c = 13.283 (8) Å; β = 106.95 (5)°, Z = 2, R = 0.0715; for [Ni 6 ](C104)2, space group P21/c, a = 9.4848 (14) Å, b = 33.941(6) Å, c = 9.793(2) A, β = 95.264(14)°, Z = 4, R = 0.0567; for [Co 6 ](C104)2, space group, P21/c, a = 9.440 (6) Å, b = 33.848 (13) Å, c = 9.820 (3) Å, β = 95.16(3)°, Z = 4, R = 0.0718. In both complexes, the metal atoms are six‐coordinate with only one of the pendants interacting with the central metal atom and the other pendant remaining uncoordinated.  相似文献   

6.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

7.
Four new ABZrF7 heptafluorozirconates (A = Rb, Tl; B = Ca, Cd) and their homologous heptafluorohafnates, all colorless, orthorhombic Cmcm (no63), Z = 4, have been synthesized by heating stoichiometric mixtures of RbF or TlF, CaF2 or CdF2 and ZrF4 (HfF4) in sealed platinum tubes at temperature ranging from 550 °C (Tl) to 600 °C (Rb). The crystal structures of both RbCdZrF7 and TlCdZrF7 have been solved from single‐crystal X‐rays diffraction data. Rietveld refinements were performed from X‐rays powder patterns for RbCaZrF7 and TlCaZrF7. In this series of heptafluorides, both B2+ and Zr4+ cations exhibit a pentagonal bipyramidal 7‐coordination. Their structural relationships with other heptafluorozirconates AIBIIZrF7 as well as β‐KYb2F7 are discussed. RbCaZrF7: a = 6.863(1) Å, b = 11.130(1) Å, c = 8.485(1) Å; TlCaZrF7: a = 6.868(1) Å, b = 11.165(1) Å, c = 8.486(1) Å; RbCdZrF7: a = 6.780(1) Å, b = 11.054(4) Å, c = 8.420(4) Å; TlCdZrF7: a = 6.784(3) Å, b = 11.099(2) Å, c = 8.424(9) Å.  相似文献   

8.
Colourless crystals grow in the colder part of a glass ampoule when AlX3·5NH3 with X = Cl, Br, I is heated for 3—6 d to 330 °C (Cl), 350 °C (Br) and 400 °C (I), respectively. The chloride forms hexagonal prisms while the bromide and iodide were obtained as a bunch of lancet‐like crystals. The chloride and bromide crystallize isotypic whereas the iodide has an own structure type. All three are related to the motif of the K2PtCl6 type. So the formula of the ammoniates may be written as X2[Al(NH3)5X] ≙ [Al(NH3)5X]X2. The compounds are characterized by the following crystallographic data AlCl3·5NH3: Pnma, Z = 4, a = 13.405 (1)Å, b = 10.458 (1)Å, c = 6.740 (2)Å AlBr3·5NH3: Pnma, Z = 4, a = 13.808 (2)Å, b = 10.827 (1)Å, c = 6.938 (1)Å AlI3·5NH3: Cmcm, Z = 4, a = 9.106 (2)Å, b = 11.370 (2)Å, c = 11.470 (2)Å For the chloride and the bromide the structure determinations were successful including hydrogen positions. All three compounds contain octahedral molecular cations [Al(NH3)5X]2+ located in distorted cubes formed by the remaining 2X ions. The orientation of the octahedra to each other is clearly different for those with X = Cl, Br in comparison to the one with X = I.  相似文献   

9.
Two new organically templated borates, [H2DAB][B7O9(OH)5]·2H2O ( 1 ) and [H2DAB][B7O10(OH)3] ( 2 ), have been synthesized under mild conditions in the presence of DAB acting as structure‐directing agent (DAB = 1,4‐diaminobutane). The structures were determined by single crystal X‐ray diffraction and further characterized by FTIR, elemental analysis, and thermogravimetric analysis. Both 1 and 2 crystallize in the same triclinic system, space group (No. 2); 1: a = 8.238(4) Å, b = 8.348 (5) Å, c = 14.574(8) Å, a = 101.050(3)°, β = 92.313(7)°, γ = 112.694(5)°, V = 900.3(8) Å3, Z = 2; 2: a = 8.8769(3) Å, b = 9.3204(2) Å, c = 10.2204(5) Å, α = 74.474(2)°, β = 85.292(5)°, γ = 72.730(2)°, V = 778.01(5) Å3, Z = 2. The structure of 1 consists of [B7O9(OH)5]2? groups, which represents the first example of organically templated heptaborate. The structure exhibits interesting hydrogen‐bonded network formed by borate polyanion [B14O20(OH)6]4?, which can be regarded as being constructed from the dehydration of the FBBs in 1 . The diprotonated organic amines are filled in the free space of the hydrogen‐bonded network and interact with the inorganic framework by extensive hydrogen bonds.  相似文献   

10.
New Oxocuprates(I). On Cs3Cu5O4, Rb2KCu5O4, RbK2Cu5O4 and K3Cu5O4 Cs3Cu5O4 light yellow, powder as well as single crystals [a = 10.313(9), b = 7.630(1), c = 14.750(4) Å, β = 106.48(6)°], Rb2KCu5O4 [a = 9.724(2), b = 7.443(0), c = 14.246(2) Å, β = 106.78(8)°], RbK2Cu5O4 [a = 9.561(1), b = 7.411(0), c = 14.111(1) Å, β = 106.76(7)°] and K3Cu5O4 [a = 9.422(1), b = 7.364(1), c = 13.995(2) Å, β = 107.00(2)°] are new prepared. The colour of the powders becomes lighter according to the sequence showed above. K3Cu5O4 shows pale yellow. The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

11.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

12.
Bis(1-aminoguanidinium) sulfate monohydrate (AG2SO4 … H2O, 1), bis(1,3-diamino-guanidinium sulfate (DAG2SO4, 2), bis(1,3,5-triaminoguanidinium) sulfate dihydrate (TAG2SO4 … 2 H2O, 3) and bis(azidoformamidinium) sulfate (AF2SO4, 5) were synthesized and characterized by multinuclear NMR, IR, and Raman spectroscopy and elemental analysis. In the synthesis of 3, double protonated triaminoguanidinium sulfate (HTAGSO4, 4) was obtained as a byproduct. The molecular structures of 15 in the crystalline state were determined by low-temperature single crystal X-ray diffraction. 1: orthorhombic, Pnma, a = 6.7222 (8) Å, b = 14.153 (2) Å, c = 11.637 (1) Å, V = 1107.1(2) Å3, Z = 4, ρcalc.= 1.586 g cm?3 R1 = 0.0442, wR2 = 0.1007 (all data). 2: hexagonal, P6122, a,b = 6.6907 (1) Å, c = 43.4600 (8) Å, γ= 120°, V = 1684.86 (5) Å3, Z = 6, ρcalc.= 1.634 g cm?3, R1 = 0.0321, wR2 = 0.0714 (all data). 3: monoclinic, C2/c, a = 9.6174 (8) Å, b = 22.858 (1) Å, c = 6.7746 (5) Å, β= 109.49 (1), V = 1404.0 (4) Å3, Z = 4, ρcalc.= 1.620 g cm?3, R1 = 0.0292, wR2 = 0.0781 (all data). 4: monoclini c, P21/c, a = 8.9998 (9), b = 6.3953 (6), c = 13.3148(12) Å, β= 99.679 (8), V = 755.44 (13) Å3, Z = 4, ρcalc.= 1.778 g cm?3, R1 = 0.0305, wR2 = 0.0809 (all data); 5: orthorhombic, Pbca, a = 11.3855 (9), b = 7.1032 (6), c = 12.807 (1) Å, V = 1035.74 (14) Å3, Z = 4, ρcalc.= 1.720 g cm?3, R1 = 0.0389, wR2 = 0.0862 (all data).  相似文献   

13.
Coordination-chemistry of cis-Trioxotungsten(VI) Complexes. Crystal Structures of LWO3 · 3 H2O, [L′WO2(OH)]Br, [LWO2Br]Br, [L2W2O5](S2O6) · 4 H2O and [LWO2(μ-O)WO(O2)2(OH2)] (L = 1,4,7-Triazacyclonane; L′ = 1,4,7-Trimethyl-1,4,7-triazacyclononane) The cyclic triamines 1,4,7-triazacyclononane (L; C6H15N3) and 1,4,7-trimethyl-1,4,7-triazacyclononane (L′; C9H21N3) react in aqueous solution with WO3 affording LWO3 · 3 H2O, 1 , and L′WO3 · 3 H2O, respectively, which yield [L′WO2(OH)]Br, 2 , and [LWO2Br]Br, 3 , in concentrated HBr solutions. In aqueous CH3SO3H solution 1 dimerizes. The iodide and dithionate 4 salts of [L2W2O5]2+ have been isolated. In 35% H2O2 complex 1 yields the neutral species [LWO2(μ-O)WO(O2)2(H2O)] 5 . The crystal structures of 1 – 5 have been determined by X-ray analysis. Crystal data: 1 : P21/c; a = 7.729(2), b = 14.887(3), c = 10.774(2) Å, β = 90.77(2)°, Z = 4; 2 : Cc; 8.910(3), b = 12.220(6), c = 13.279(6) Å, β = 101.31(3)°, Z = 4; 3 : Cmc21, a = 8.857(5), b = 12.062(7), c = 11.218(7) Å, Z = 4; 4 : Cc, a = 17.601(7), b = 12.906(7), c = 14.107(8) Å, β = 124.08(4)°, Z = 4; 5 : P212121; a = 8.452(4), b = 11.301(6), c = 13.750(6) Å, Z = 4.  相似文献   

14.
The title compounds were prepared by reaction of Tl2Q (Q = S, Se and Te) Sc and Q in the temperature range of 200 to 500 °C. The structures of the selenide and the telluride adopt the α‐NaFeO2 type, while TlScS2 crystallizes in the β‐RbScO2 type structure. The space group is for TlScSe2 and TlScTe2 with a = 3.9370(4) Å, c = 23.194(5) Å, and a = 4.2129(4) Å, c = 24.099(3) Å, respectively. The sulphide crystallizes in P63/mmc with a = 3.761(3) Å and c = 14.942(4) Å. The crystal chemical relations between the three chalcogenides are discussed. According to the electrical measurements and the band structure calculations, the compounds are semiconductors or poor metals.  相似文献   

15.
Pb2PdX6 (X = Cl, Br) – Compounds with Elongated [PdX6] Octahedra In contradiction to published data new compounds in the systems PbX2—PdX2 (X = Cl, Br) with the formula Pb2PdCl6 (I) and Pb2PdBr6 (II) were found. These were synthesized by thermal treatment of the corresponding mixtures of PbX2 and PdX2 (X = Cl, Br). X-ray single crystal structure analysis shows isotypism of I and II, monoclinic, P21/c (No. 14), Z = 2, I: a = 9.037(2) Å, b = 6.224(1) Å, c = 8.162(1) Å, β = 90.31(7)β, II: a = 9.512(7) Å, b = 6.584(8) Å, c = 8.383(3) Å, β = 90.07(5)º. Strongly elongated PdX6 octahedra are found in the crystal structure. Additional characterisation of the compounds was done by DTA, IR/RAMAN spectra and 207Pb MAS NMR investigations. Remarcable low field shifts were found for 207Pb.  相似文献   

16.
Complexes of trifluoromethanesulfonates (triflates) with alkali metals Na, Rb, Cs have been prepared in the presence of various macrocyclic polyether crowns [(12‐crown‐4), (15‐crown‐5) and (18‐crown‐6)]. Depending on the combination of alkali ion with crown, the complexes include separated ion pairs [Na(12‐crown‐4)2] [SO3CF3] ( 1 ) and contact ion pairs [Na(15‐crown‐5)] [SO3CF3] ( 2 ), [Rb(18‐crown‐6)] [SO3CF3] ( 3 ), and [Cs(18‐crown‐6)] [SO3CF3] ( 4 ), in which the triflate acts as a bidentate ligand. It is shown that the choice of crown ether is of paramount importance in determining the solid‐state structural outcome. The complex resulting from the pairing of crown ether ( 1 ) develops, when the crown ether is too small in relation to the alkali ion radius. When the cavity size of the crown ether is matched with the alkali ion radius, simple monomeric structures are identified in 2 , 3 and 4 . The title compounds crystallize in the monoclinic crystal system: 1 : space group P2/c with a = 9.942(3), b = 11.014(2), c = 10.801(3) Å, β = 97.30(2)°, V = 1173.1(4) Å3, Z = 2, R1 = 0.0812, wR2 = 0.1133: 2 : space group P21/m with a = 7.949(2), b = 12.063(3), c = 9.094(2) Å, β = 105.98(2)°, V = 838.3(4) Å3, Z = 2, R1 = 0.0869, wR2 = 0.1035: 3 : space group P21/c with a = 12.847(5), b = 8.448(2), c = 22.272(6) Å, β = 122.90(3)°, V = 2029.5(1) Å3, Z = 4, R1 = 0.0684, wR2 = 0.1044: 4 : space group P21/n with a = 12.871(3), b = 8.359(1), c = 19.019(4) Å, β = 92.61(2)°, V = 2044.2(6) Å3, Z = 4, R1 = 0.0621, wR2 = 0.0979.  相似文献   

17.
Synthesis, Crystal Structure and Thermal Behaviour of Fluoroaluminates of the Composition (NH4)[M(H2O)6](AlF6) (M = Zn, Ni), [Zn(H2O)6][AlF5(H2O)], and (PyH)4[Al2F10] · 4 H2O Four new fluoroaluminates were obtained from fluoroacidic solutions of respective metal salts. The compounds of zinc ( I a : P21/c, a = 12.688(3), b = 6.554(1), c = 12.697(3) Å, β = 95.21(3)°, V = 1051.5(4) Å3, Z = 4) and nickel ( I b : P21/c, a = 12.685(3), b = 6.517(1), c = 12.664(2)Å, β = 94.55(2)°, V = 1043.6(4) Å3, Z = 4) are isotypic and represent a new structure type consisting of two different cations, NH4+ and [M(H2O)6]2+ and [AlF6]3–‐anions. [Zn(H2O)6][AlF5(H2O)] ( II : C2/m, a = 10.769(2), b = 13.747(3), c = 6.487(1)Å, β = 100.02(3)°, V = 945.7(3) Å3, Z = 4) is characterized by a H2O/F‐disorder in the [AlF5(H2O)]‐octahedra in two trans positions. In (PyH)4[Al2F10] · 4 H2O ( III : Cmc21, a = 15.035(3), b = 20.098(4), c = 12.750(4) Å, V = 5364(2) Å3, Z = 8), bioctahedral [Al2F10]4– anions have been found for the first time. The structures are described and discussed in comparison. The new compounds were used as precursors in order to obtain new AlF3‐phases. However, the thermal decomposition did not result in the formation of any new metastable AlF3‐phase. Instead, phase mixtures of either α‐AlF3 and β‐AlF3 or AlF3 and MF2 were obtained.  相似文献   

18.
Indium(III) chloride forms in water with potassium 1,2‐dithiooxalate (dto) and potassium 1,2‐dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2‐dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2‐dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe3N)4[(dto)2In(dto)In(dto)2] ( 1 ), (BzlPh3P)4[(dto)2In(dto)In(dto)2] ( 2 ), (BzlMe3N)3[In(dtsq)3] ( 3 ), (Bu4N)3[In(dtsq)3] ( 4 ) and (Ph4P)[In(dtsq)2(DMF)2] ( 5 ), have been isolated and characterized by X‐ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1 , monoclinic in P21/c with a = 14.4035(5) Å, b = 10.8141(5) Å, c = 23.3698(9) Å, β = 124.664(2)°, and Z = 2; 2 , triclinic in P with a = 11.3872(7) Å, b = 13.6669(9) Å, c = 17.4296(10) Å, α = 88.883(5)°, β = 96.763(1)°, γ = 74.587(5)°, and Z = 1; 3 , hexagonal in R3 with a = 20.6501(16) Å, b = 20.6501(16) Å, c = 19.0706(13) Å and Z = 6; 4 , monoclinic in P21/c with a = 22.7650(15) Å, b = 20.4656(10) Å, c = 14.4770(9) Å, β = 101.095(5)°, and Z = 4; 5 , triclinic in P with a = 9.2227(6) Å, b = 15.3876(9) Å, c = 15.5298(9) Å, α = 110.526(1)°, β = 100.138(1)°, γ = 101.003(1)°, and Z = 2.  相似文献   

19.
Four new thioantimonate(III) compounds with the general formula [TM(tren)]Sb4S7, TM = Mn 1 , Fe 2 , Co 3 and Zn 4 , were synthesized under solvothermal conditions by reacting elemental TM, Sb and S in an aqueous solution of tren (tren = tris(2‐aminoethyl)amine). All compounds crystallize in the monoclinic space group P21/n with four formula units in the unit cell. Single crystal X‐ray analyses of 1 [a = 8.008(2), b = 10.626(2), c = 25.991(5) Å, β = 90.71(3)°, V = 2211.4(8) Å3], 2 [a = 8.0030(2), b = 10.5619(2), c = 25.955(5) Å, β = 90.809(3)°, V = 2193.69(8) Å3], 3 [a = 7.962(2), b = 10.541(2), c = 25.897(5) Å, β = 90.90(3)°, V = 2173.0(8) Å3] and 4 [a = 7.978(2), b = 10.625(2), c = 25.901(5) Å, β = 90.75(3)°, V = 2195.2(8) Å3] reveal that the compounds are isostructural. The [Sb4S7]2‐ anions are composed of three SbS3 trigonal pyramids and one SbS4 unit as primary building units (PBU). The PBUs share common edges and corners to form semicubes (Sb3S4) which may be regarded as secondary building units (SBU). The SBUs and SbS3 pyramids are joined in an alternating fashion yielding the equation/tex2gif-stack-1.gif[Sb4S7] anionic chain which is directed along [100]. Weaker Sb‐S bonding interactions between neighbored chains lead to the formation of layers within the (001) plane which contain pockets that are occupied by the cations. The TM2+ ions are in a trigonal bipyramidal environment of four N atoms of the tren ligand and one S atom of the thioantimonate(III) anion. The optical band gaps depend on the TM2+ ion and amount to 3.11 eV for 1 , 2.04 eV for 2 , 2.45 eV for 3 , and 2.60 eV for 4 .  相似文献   

20.
New Mono- and Polynuclear Complexes of the Lanthanides. On the Reaction of Ph2Se2 with Ytterbium Surprising formation of different complexes during the reaction of Ytterbium with Dichalcogenides. With THF is the mononuclear complex [Yb(SePh)3(thf)3] 1 (space group P31c (No. 159), Z = 2, a = 15.353(3) Å, c = 7.8920(10) Å) built up. In this compound is the Lanthanidion octahedrally souronded by the ligands. Reaction in Toluol/THF leads in contrast to the tetranuclear complex [Yb4(SePh)8O2(thf)6] 2 (space group C2/c (No. 14), Z = 4, a = 27.084(9) Å, b = 13.021(4) Å, c = 24.002(8) Å, β = 106.13(3)°). In DME it is possible to isolate the ionic species [Yb3(SePh)6(dme)4][Yb(SePh)4(dme)] 3 (space group P1 (No. 2), Z = 2, a = 11.109(3) Å, b = 11.664(2) Å, c = 36.303(10) Å, α = 84.60(4)°, β = 89.52(3)°, γ = 73.69(2)°). In this reactions are neutral and also ionic complexes accesible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号