首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A homology model of Mycobacterium avium complex dihydrofolate reductase (MAC DHFR) was constructed on the basis of the X-ray crystal structure of Mycobacterium tuberculosis (Mtb) DHFR. The homology searching of the MAC DHFR resulted in the identification of the Mtb DHFR structure (PDB 1DF7) as the template for the model building. The MAC enzyme sequence was aligned to that of the Mtb counterpart using a modified Needleman and Wunsch methodology. The initial geometry to be modeled was copied from the template, either fully or partially depending on whether the residues were conserved or not, respectively. Using a randomized modeling procedure, 10 independent models of the target protein were built. The cartesian average of all the model structures was then refined using molecular mechanics. The resulting model was assessed for stereochemical quality using a Ramachandran plot and by analyzing the consistency of the model with the experimental data. The structurally and functionally important residues were identified from the model. Further, 5-deazapteridines recently reported as inhibitors of MAC DHFR were docked into the active site of the developed model. All the seven inhibitors used in the docking study have a similar docking mode at the active site. The network of hydrogen bonds around the 2,4-diamino-5-deazapteridine ring was found to be crucial for the binding of the inhibitors with the active site residues. The 5-methyl group of the inhibitors was located in a narrow hydrophobic pocket at the bottom of the active site. The relative values of the three torsion angles of the inhibitors were found to be important for the proper orientation of the inhibitor functional groups into the active site.  相似文献   

2.
CCK1受体的同源模拟和分子对接研究   总被引:2,自引:0,他引:2  
何谷  黄文才  郭丽 《化学学报》2008,66(1):97-102
采用同源建模法对CCK1受体的三维结构进行了模拟,并采用分子动力学方法对模型进行修正和优化,再采用与训练集激动剂和拮抗剂分子对接的方法分别得到激动状态和拮抗状态CCK1受体的三维结构模型。得到的模型使用DOCK对接软件对训练集中的分子进行对接,所得结果与其实际活性拟合度较好,说明我们建立的激动和拮抗状态下的CCK1受体的三维结构模型比较合理,可以作为化合物虚拟筛选的模型对新化合物进行虚拟筛选。  相似文献   

3.
通过同源模建和分子动力学模拟构建了人类胞外信号调节激酶1(hERK1)的三维结构,并利用profile-3D和procheck方法评估了模型的合理性.对所得的结构使用分子对接程序Affinity和CDOCKER进行了两种抑制剂的对接.结果显示这两种抑制剂与酶的结合方式相似,它们均与残基K36,Q87之间存在氢键作用,二者取代基的不同导致了抑制能力的差别.基于对接结果分析,对已知抑制剂进行结构改造,得到了一个理论上结合能力更强的抑制剂.它在保持与K36和Q87之间氢键的同时,又与残基D93,K96,S135形成了四条氢键,显著提高了与酶的相互作用.对接相互作用能显著下降,MM-PBSA结合自由能降为负值,这些均体现了抑制能力的提高.本工作对于针对该酶的抑制剂设计和相关疾病的新药开发具有理论指导价值.  相似文献   

4.
吕雯  吕炜  牛彦  雷小平 《物理化学学报》2009,25(7):1259-1266
采用同源模建方法对M1受体的三维结构进行了模拟, 将得到的模型分别与M受体完全激动剂乙酰胆碱和M1受体选择性激动剂占诺美林进行分子对接, 形成非特异性激动和特异性激动的受体-配体复合物. 用分子动力学模拟方法分别将未与小分子对接的M1受体、M1受体-乙酰胆碱复合物、M1受体-占诺美林复合物置于磷脂双膜中模拟10 ns. 将模拟后的蛋白质结构与包含活性分子的测试库对接并将结果打分, 以top5%富集因子(EF)作为评价依据, 用占诺美林优化后的M1受体模型的EF为8.0, 用乙酰胆碱优化后M1受体模型的EF为6.5, 非复合物的EF为1.5. 说明M1受体选择性激动剂复合物进行分子动力学模拟后得到的三维结构模型比较合理, 可以作为化合物虚拟筛选的模型对新化合物进行虚拟筛选, 为找到新的选择性M1受体激动剂奠定了基础.  相似文献   

5.
Combined docking and molecular dynamics (MD) simulations are carried out for the rational design of affinity peptide ligand of tissue-type plasminogen activator (t-PA). Ten amino acids that have high affinity to three different regions of t-PA are identified by the amino acids location method on the basis of candidate pocket structure of t-PA. Then, 14 tetrapeptides are built and docked into the candidate pocket of t-PA. The absolute value of the D(score) calculated from the docking simulation is used to assess the affinity of a peptide for t-PA. Consequently, six tetrapeptides that have high D(score) values are selected and linked to a spacer arm of [NH(CH(2))(6)NH(2)] that is present on EAH Sepharose gel. The linked compounds are further evaluated by docking into the candidate pocket of t-PA. As a result, the tetrapeptide QDES with the highest D(score) value is selected. Molecular surface analysis with the MOLCAD program reveals that electrostatic interactions and hydrogen bonds (H-bonds) contribute to the affinity interactions between the tetrapeptide and t-PA. MD simulations indicate that QDES-t-PA complex keeps stable, and the distances between the carboxyl groups of Asp189, Gln192 and Asp194 and the charged amino group of glutamine change little. Moreover, all the nine H-bonds found in the docking simulation are confirmed by the MD simulations. It is also found that three water molecules act as bridges between the ligand and the protein pocket by hydrogen bonding. Finally, high binding affinity and specificity of the peptide ligand are confirmed by the purification of t-PA from crude porcine heart extract using the immobilized-ligand column for affinity chromatography.  相似文献   

6.
7.
Lipoxygenases (LOXs) are a group of enzymes involved in the oxygenation of polyunsaturated fatty acids. Among these 5-lipoxygenase (5-LOX) is the key enzyme leading to the formation of pharmacologically important leukotrienes and lipoxins, the mediators of inflammatory and allergic disorders. In view of close functional similarity to mammalian lipoxygenase, potato 5-LOX is used extensively. In this study, the homology modeling technique has been used to construct the structure of potato 5-LOX. The amino acid sequence identity between the target protein and sequence of template protein 1NO3 (soybean LOX-3) searched from NCBI protein BLAST was 63%. Based on the template structure, the protein model was constructed by using the Homology program in InsightII. The protein model was briefly refined by energy minimization steps and validated using Profile-3D, ERRAT and PROCHECK. The results showed that 99.3% of the amino acids were in allowed regions of Ramachandran plot, suggesting that the model is accurate and its stereochemical quality good. Like all LOXs, 5-LOX also has a two-domain structure, the small N-terminal beta-barrel domain and a larger catalytic domain containing a single atom of non-heme iron coordinating with His525, His530, His716 and Ile864. Asn720 is present in the fifth coordination position of iron. The sixth coordination position faces the open cavity occupied here by the ligands which are docked. Our model of the enzyme is further validated by examining the interactions of earlier reported inhibitors and by energy minimization studies which were carried out using molecular mechanics calculations. Four ligands, nordihydroguaiaretic acid (NDGA) having IC(50) of 1.5 microM and analogs of benzyl propargyl ethers having IC(50) values of 760 microM, 45 microM, and no inhibition respectively were selected for our docking and energy minimization studies. Our results correlated well with the experimental data reported earlier, which proved the quality of the model. This model generated can be further used for the design and development of more potent 5-LOX inhibitors.  相似文献   

8.
Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of ? 7.97 and ? 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.  相似文献   

9.
The seven transmembrane helices G-protein-coupled receptors (GPCRs) form one of the largest superfamilies of signaling proteins found in humans. Homology modeling, molecular docking, and molecular dynamics (MD) simulation were carried out to construct a reliable model for CCR1 as one of the GPCRs and to explore the structural features and the binding mechanism of BX471 as one of the most potent CCR1 inhibitors. In this study, BX471 has been docked into the active site of the CCR1 protein. After docking, one 20 ns MD simulation was performed on the CCR1-ligand complex to explore effects of the presence of lipid membrane in the vicinity of the CCR1-ligand complex. At the end of the MD simulation, a change in the position and orientation of the ligand in the binding site was observed. This important observation indicated that the application of MD simulation after docking of ligands is useful. Explorative runs of molecular dynamics simulation on the receptor-ligand complex revealed that except for Phe85, Phe112, Tyr113, and Ile259, the rest of the residues in the active site determined by docking are changed. The results obtained are in good agreement with most of the experimental data reported by others. Our results show that molecular modeling and rational drug design for chemokine targets is a possible approach.  相似文献   

10.
Theileria annulata secretes peptidyl prolyl isomerase enzyme (TaPIN1) to manipulate the host cell oncogenic signaling pathway by disrupting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) protein level leading to an increased level of c-Jun proto-oncogene. Buparvaquone is a hydroxynaphthoquinone anti-theilerial drug and has been used to treat theileriosis. However, TaPIN1 contains the A53 P mutation that causes drug resistance. In this study, potential TaPIN1 inhibitors were investigated using a library of naphthoquinone derivatives. Comparative models of mutant (m) and wild type (wt) TaPIN1 were predicted and energy minimization was followed by structure validation. A naphthoquinone (hydroxynaphthalene-1,2-dione, hydroxynaphthalene-1,4-dione) and hydroxynaphthalene-2,3-dione library was screened by Schrödinger Glide HTVS, SP and XP docking methodologies and the docked compounds were ranked by the Glide XP scoring function. The two highest ranked docked compounds Compound 1 (4-hydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynaphthalene-1,2-dione) and Compound 2 (6-acetyl-1,4,5,7,8-pentahydroxynaphthalene-2,3-dione) were used for further molecular dynamics (MD) simulation studies. The MD results showed that ligand Compound 1 was located in the active site of both mTaPIN1 and wtTaPIN1 and could be proposed as a potential inhibitor by acting as a substrate antagonist. However, ligand Compound 2 was displaced away from the binding pocket of wtTaPIN1 but was located near the active site binding pocket of mTaPIN1 suggesting that could be selectively evaluated as a potential inhibitor against the mTaPIN1. Compound 1 and Compound 2 ligands are potential inhibitors but Compound 2 is suggested as a better inhibitor for mTaPIN1. These ligands could also further evaluated as potential inhibitors against human peptidyl prolyl isomerase which causes cancer in humans by using the same mechanism as TaPIN1.  相似文献   

11.
12.
Summary Using MacroModel, peptide, peptidomimetic and non-peptidomimetic inhibitors of the zinc metalloenzyme, farnesyltransferase (FTase), were docked into the enzyme binding site. Inhibitor flexibility, farnesyl pyrophosphate substrate flexibility, and partial protein flexibility were taken into account in these docking studies. In addition to CVFM and CVIM, as well as our own inhibitors FTI-276 and FTI-2148, we have docked other farnesyltransferase inhibitors (FTIs) including Zarnestra, which presently is in advanced clinical trials. The AMBER* force field was employed, augmented with parameters that were derived for zinc. A single binding site model that was derived from the crystal structure of CVFM complexed with farnesyltransferase and farnesylpyrophosphate was used for these studies. The docking results using the lowest energy structure from the simulation, or one of the lowest energy structures, were generally in excellent agreement with the X-ray structures. One of the most important findings of this study is that numerous alternative conformations for the methionine side chain can be accommodated by the enzyme suggesting that the methionine pocket can tolerate groups larger than methionine at the C-terminus of the tetrapeptide and suggesting alternative locations for the placement of side chains that may improve potency.  相似文献   

13.
The binding modes of well known MurD inhibitors have been studied using molecular docking and molecular dynamics (MD) simulations. The docking results of inhibitors 1-30 revealed similar mode of interaction with Escherichia coli-MurD. Further, residues Thr36, Arg37, His183, Lys319, Lys348, Thr321, Ser415 and Phe422 are found to be important for inhibitors and E. coli-MurD interactions. Our docking procedure precisely predicted crystallographic bound inhibitor 7 as evident from root mean square deviation (0.96 Å). In addition inhibitors 2 and 3 have been successfully cross-docked within the MurD active site, which was pre-organized for the inhibitor 7. Induced fit best docked poses of 2, 3, 7 and 15/2Y1O complexes were subjected to 10 ns MD simulations to determine the stability of the predicted binding conformations. Induce fit derived docked complexes were found to be in a state of near equilibrium as evident by the low root mean square deviations between the starting complex structure and the energy minimized final average MD complex structures. The results of molecular docking and MD simulations described in this study will be useful for the development of new MurD inhibitors with high potency.  相似文献   

14.
We previously reported a quinoxalin-2-one compound (Compound 1) that had inhibitory activity equivalent to existing platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors. Lead optimization of Compound 1 to increase its activity and selectivity, using structural information regarding PDGFbeta R-ligand interactions, is urgently needed. Here we present models of the PDGFbeta R kinase domain complexed with quinoxalin-2-one derivatives. The models were constructed using comparative modeling, molecular dynamics (MD) and ligand docking. In particular, conformations derived from MD, and ligand binding site information presented by alpha-spheres in the pre-docking processing, allowed us to identify optimal protein structures for docking of target ligands. By carrying out molecular modeling and MD of PDGFbeta R in its inactive state, we obtained two structural models having good Compound 1 binding potentials. In order to distinguish the optimal candidate, we evaluated the structural activity relationships (SAR) between the ligand-binding free energies and inhibitory activity values (IC50 values) for available quinoxalin-2-one derivatives. Consequently, a final model with a high SAR was identified. This model included a molecular interaction between the hydrophobic pocket behind the ATP binding site and the substitution region of the quinoxalin-2-one derivatives. These findings should prove useful in lead optimization of quinoxalin-2-one derivatives as PDGFb R inhibitors.  相似文献   

15.
肠道病毒71型外壳蛋白VP1在大肠杆菌中的表达   总被引:4,自引:0,他引:4  
将扩增得到的肠道病毒71型外壳蛋白VP1基因克隆到测序载体pGEM-T,测序验证该序列为目的片段后,将目的基因克隆到原核表达载体pGEX-5x-1中,转化大肠杆菌BL21,IPTG诱导表达,产物经SDS-PAGE分析和Western blot验证。结果表明,在经IPTG诱导的BL21中检测到分子量与预期大小相符的大约60 kDa的融合蛋白。利用表达产物作为抗原,对EV71感染病人阳性血清的检测初步证实,重组蛋白VP1可以作为检测EV71感染的检测用抗原。  相似文献   

16.
利用同源模建和分子动力学模拟方法构建了人类丝氨酸消旋酶(hSR)的三维结构, 并利用profile-3D和procheck方法评估了模型的可靠性. 在此基础上用分子对接程序(affinity)将多肽类抑制剂A和B分别与hSR进行对接, 获得了其复合物结构的理论模型. 通过配体与受体之间相互作用能和结构分析给出了此类抑制剂与hSR的具体结合方式, 明确了hSR与此类抑制剂结合时起重要作用的氨基酸残基, 为基于人类丝氨酸消旋酶三维结构的药物设计提供重要的参考信息.  相似文献   

17.
Capsid protein enterovirus 71 (EV71) is one of the major viruses that cause the severe encephalitis and thus result in a high mortality in children less than 5 years of age.In an effort to discover new potent inhibitors against EV71,a novel three-dimensional pharmacophore model was developed on 24 inhibitors with different molecular structures and bioactivities.The best hypothesis (Hypo1) has a high predictive power and consists of four features,namely,one hydrophobic point (HY) and three hydrogen-bond acceptors (HA).Two key features of the best Hypo1,HY1 and HA3 match well with an important narrow hydrophobic canyon and with the surface of LYS274 in the target EV71 active site,respectively.The more versatile feature,HA1,is firstly found to be very influential on these compounds' bioactivities,which may interact with the other side of the active site in the EV71 receptor.The application of the model is successful in predicting the activities of 30 known EV71 inhibitors with a correlation coefficient of 0.831.Furthermore,Hypo1 demonstrates a superior screening capability for retrieving inhibitors from the database with a high enrichment factor of 70.This study provides some important clues in search for more potent inhibitors against EV71 infection.  相似文献   

18.
The ligand-receptor interaction between some peptidomimetic inhibitors and a class II MHC peptide presenting molecule, the HLA-DR4 receptor, was modeled using some three-dimensional (3D) quantitative structure-activity relationship (QSAR) methods such as the Comparative Molecular Field Analysis (CoMFA), Comparative Molecular Similarity Indices Analysis (CoMSIA), and a pharmacophore building method, the Catalyst program. The structures of these peptidomimetic inhibitors were generated theoretically, and the conformations used in the 3D QSAR studies were defined by docking them into the known structure of HLA-DR4 receptor through the GOLD, GLIDE Rigidly, GLIDE Flexible, and Xscore programs. Some of the parameters used in these docking programs were selected by docking an X-ray ligand into the receptor and comparing the root-means-square difference (RMSD) computed between the coordinates of the X-ray and docked structure. However, the goodness of a docking result for docking a series of peptidomimetic inhibitors into the HLA-DR4 receptor was judged by comparing the Spearman's rank correlation coefficient computed between each docking result and the activity data taken from the literature. The best CoMFA and CoMSIA models were constructed using the aligned structures of the best docking result. The CoMSIA was conducted in a stepwise manner to identify some important molecular features that were further employed in a pharmacophore building process by the Catalyst program. It was found that most inhibitors of the training set were accurately predicted by the best pharmacophore model, the Hypo1 hypothesis constructed. The deviation or conflict found between the actual and predicted activities of some inhibitors of both the training and the test sets were also investigated by mapping the Hypo1 hypothesis onto the corresponding structures of the inhibitors.  相似文献   

19.
In the present in-silico study, various computational techniques were applied to determine potent compounds against TRAP1 kinase. The pharmacophore hypothesis DHHRR_1 consists of important features required for activity. The 3D QSAR study showed a statistically significant model with R2 = 0.96 and Q2 = 0.57. Leave one out (LOO) cross-validation (R2 CV = 0.58) was used to validate the QSAR model. The molecular docking study showed maximum XP docking scores (−11.265, −10.532, −10.422, −10.827, −10.753 kcal/mol) for potent pyrazole analogs (42, 46, 49, 56, 43), respectively, with significant interactions with amino acid residues (ASP 594, CYS 532, PHE 583, SER 536) against TRAP1 kinase receptors (PDB ID: 5Y3N). Furthermore, the docking results were validated using the 100 ns MD simulations performed for the selected five docked complexes. The selected inhibitors showed relatively higher binding affinities than the TRAP1 inhibitor molecules present in the literature. The ZINC database was used for a virtual screening study that screened ZINC05297837, ZINC05434822, and ZINC72286418, which showed similar binding interactions to those shown by potent ligands. Absorption, distribution, metabolism, and excretion (ADME) analysis showed noticeable results. The results of the study may be helpful for the further development of potent TRAP1 inhibitors  相似文献   

20.
New methods for docking, template fitting and building pseudo-receptors are described. Full conformational searches are carried out for flexible cyclic and acyclic molecules. QXP (quick explore) search algorithms are derived from the method of Monte Carlo perturbation with energy minimization in Cartesian space. An additional fast search step is introduced between the initial perturbation and energy minimization. The fast search produces approximate low-energy structures, which are likely to minimize to a low energy. For template fitting, QXP uses a superposition force field which automatically assigns short-range attractive forces to similar atoms in different molecules. The docking algorithms were evaluated using X-ray data for 12 protein–ligand complexes. The ligands had up to 24 rotatable bonds and ranged from highly polar to mostly nonpolar. Docking searches of the randomly disordered ligands gave rms differences between the lowest energy docked structure and the energy-minimized X-ray structure, of less than 0.76 Å for 10 of the ligands. For all the ligands, the rms difference between the energy-minimized X-ray structure and the closest docked structure was less than 0.4 Å, when parts of one of the molecules which are in the solvent were excluded from the rms calculation. Template fitting was tested using four ACE inhibitors. Three ACE templates have been previously published. A single run using QXP generated a series of templates which contained examples of each of the three. A pseudo-receptor, complementary to an ACE template, was built out of small molecules, such as pyrrole, cyclopentanone and propane. When individually energy minimized in the pseudo-receptor, each of the four ACE inhibitors moved with an rms of less than 0.25 Å. After random perturbation, the inhibitors were docked into the pseudo-receptor. Each lowest energy docked structure matched the energy-minimized geometry with an rms of less than 0.08 Å. Thus, the pseudo-receptor shows steric and chemical complementarity to all four molecules. The QXP program is reliable, easy to use and sufficiently rapid for routine application in structure-based drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号