首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this paper, we are interested in the propagation of Rayleigh waves in orthotropic fluid-saturated porous media. This problem was investigated by Liu and Liu (2004). The authors have derived the secular equation of the wave but that secular equation is still in implicit form. The main aim of this paper is to derive explicit secular equation of the wave. By employing the method of polarization vector, the secular equations of Rayleigh waves in explicit form is obtained. This equation recovers the dispersion equation of Rayleigh waves propagating in pure orthotropic elastic half-spaces. Remarkably, the secular equation obtained is not a complex equation as the one derived by Liu and Liu, it is a really real equation.  相似文献   

2.
In this paper, we propose a new boundary integral equation for plane harmonic functions. As a new approach, the equation is derived from the conservation integrals. Every variable in the integral equation has direct engineering interest. When this integral equation is applied to the Dirichlet problem, one will get an integral equation of the second kind, so that the algebraic equation system in the boundary element method has diagonal dominance. Finally, this equation is applied to elastic torsion problems of cylinders of different sections, and satisfactary numerical results are obtained.  相似文献   

3.
范存旭 《力学学报》2007,39(5):704-707
提出球壳轴对称弯曲问题共轭二阶挠度微分方程并给出了初等函数解. 球壳微分方程是薄壳理论三大壳之一旋转壳的典型方程. 共轭二阶挠度微分方程是球 壳中微分方程形式最简单的, 是人们最喜爱的挠度微分方程. 挠度微分方程满足边 界条件非常简单, 使球壳的计算得到很大的简化.  相似文献   

4.
Newton equations are dynamical systems on the space of fields. The solutions of a given equation which are curves of characteristic fields for its force are planar and have constant angular momentum. Separable solutions are characteristic with angular momentum equal to zero. A Newton equation is separable if and only if its characteristic equation is homogeneous. Separable equations correspond to invariants of homogeneous ordinary differential equations, and those associated with a given homogenous equation correspond to its generalized dilation symmetries. A Newton equation is compatible with the characteristic condition if and only if its characteristic equation is linear. Such equations correspond to invariants of linear ordinary differential equations. Those associated with a given linear equation correspond to the central force problems on its solution space. Regardless of compatibility, any Newton equation with a plane of characteristic fields has non-separable characteristic solutions.  相似文献   

5.
Generalization of the Krook kinetic relaxation equation   总被引:3,自引:0,他引:3  
One of the most significant achievements in rarefied gas theory in the last 20 years is the Krook model for the Boltzmann equation [1]. The Krook model relaxation equation retains all the features of the Boltzmann equation which are associated with free molecular motion and describes approximately, in a mean-statistical fashion, the molecular collisions. The structure of the collisional term in the Krook formula is the simplest of all possible structures which reflect the nature of the phenomenon. Careful and thorough study of the model relaxation equation [2–4], and also solution of several problems for this equation, have aided in providing a deeper understanding of the processes in a rarefied gas. However, the quantitative results obtained from the Krook model equation, with the exception of certain rare cases, differ from the corresponding results based on the exact solution of the Boltzmann equation. At least one of the sources of error is obvious. It is that, in going over to a continuum, the relaxation equation yields a Prandtl number equal to unity, while the exact value for a monatomic gas is 2/3.In a comparatively recent study [5] Holway proposed the use of the maximal probability principle to obtain a model kinetic equation which would yield in going over to a continuum the expressions for the stress tensor and the thermal flux vector with the proper viscosity and thermal conductivity.In the following we propose a technique for constructing a sequence of model equations which provide the correct Prandtl number. The technique is based on an approximation of the Boltzmann equation for pseudo-Maxwellian molecules using the method suggested by the author previously in [6], For arbitrary molecules each approximating equation may be considered a model equation. A comparison is made of our results with those of [5].  相似文献   

6.
In this paper, we study the structural stability of the Cahn-Hilliard equation and the phase-field equations. We show that the Cahn-Hilliard equation and the phase-field equations are topologically conjugate to a decoupled system of a linear equation of infinite dimension and an ordinary differential equation which is the reduced equation on the inertial manifold; particularly, the flow nearby hyperbolic stationary solutions is structurally stable.  相似文献   

7.
The Camassa–Holm equation admits undistorted traveling waves that are either smooth or exhibit peaks or cusps. All three wave types can be periodic or solitary. Also waves of different types may be combined. In the present paper it is shown that, apart from peaks and cusps, the traveling waves governed by the Camassa–Holm equation can be found from some simpler equation. In the case of peaked solutions, this reduced equation is even linear. The governing equation of traveling waves in its original form can be interpreted as a nonlinear combination of the reduced equation and its first integral. For a small range of the integration constant, the reduced equation admits bounded solutions, which then are directly inherited by the Camassa–Holm equation. In general, the solutions of the reduced equation are unbounded and cannot be considered to represent traveling waves. The full equation, however, has a nonlinearity in the highest derivative, which is characteristic for the Camassa–Holm and some other equations. This nonlinear term offers the possibility of constructing bounded traveling waves from the unbounded solutions of the reduced equation. These waves necessarily have discontinuities in the slope and are, therefore, solutions only in a generalized sense.  相似文献   

8.
湍流两相流的脉动速度联合PDF输运方程   总被引:4,自引:1,他引:4  
概率密度函数(PDF)的方法是构造两相湍流模型的一种重要的方法.构建气体-颗粒速度联合PDF输运方程的关键是颗粒所见气体微团速度的Langevin方程.首先由N-S方程出发,精确推导出颗粒所见气体微团脉动速度的Langevin方程,进而通过理论分析表明,对比通常采用的颗粒所见气体微团瞬时速度的Langevin方程而言,采用前者能有效地减少关联量的统计偏差.最后,给出了颗粒-气体脉动速度的联合PDF输运方程.  相似文献   

9.
A one-dimensional nonlinear fractional filtration equation with the Riemann–Liouville time-fractional derivative is proposed for modeling fluid flow through a porous medium. This equation is derived under an assumption that the fluid has a fractional equation of state in which the fluid density depends on the time-fractional derivative of pressure. The obtained equation belongs to the diffusion-wave type of equations. A case when the order of fractional differentiation is close to an integer number is considered, and a small parameter is introduced into the fractional filtration equation under consideration. An expansion of the Riemann–Liouville time-fractional derivative into the series with respect to this small parameter is obtained. Using this expansion, a first-order approximation of the derived fractional filtration equation is performed. Next, the problem of approximate Lie point symmetry group classification for this approximate nonlinear filtration equation with a small parameter is studied. It is shown that approximate symmetry groups admitted by different realizations of the approximate filtration equation have much more dimensions than the corresponding exact Lie point symmetry groups admitted by unperturbed fractional diffusion-wave equations. Obtained classification results permit to construct approximate invariant solutions for the considered nonlinear time-fractional filtration equations.  相似文献   

10.
Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and the corresponding multi-symplectic conservation property is proved. The backward error analysis shows that the explicit multi-symplectic scheme has good accuracy. The sine-Gordon equation and the Klein-Gordon equation are simulated by an explicit multi-symplectic scheme. The numerical results show that the new explicit multi-symplectic scheme can well simulate the solitary wave behaviors of the nonlinear wave equation and approximately preserve the relative energy error of the equation.  相似文献   

11.
The inhomogeneous vertical turbulent convection in the planetary boundary layer has been analysed. The governing equation is the three dimensional advection equation. With the help of a model of the temperature-velocity correlation the advection equation is transformed into a solvable equation. Numerical solution has been obtained for some particular conditions.  相似文献   

12.
A geometric approach is undertaken towards the solution of the unsteady transonic small disturbance equation describing the low frequency flow field about a thin airfoil. From group properties given in Anderson and Ibragimov, Lie-Bäcklund Transformations in Applications (1979) we derive three invariance groups for the equation. Based on these groups a reduction of the equation is performed. The reduction leads to a steady equation and to an ordinary differential equation from which group invariant solutions of the unsteady transonic small disturbance equation can be obtained.  相似文献   

13.
In the usual formulation of singular equation approach for crack problems in plane elasticity [1,2], if one changes the right-hand term of the integral equation from tractions to resultant forces, a new integral equation can be obtained and is presented in this paper. The newly obtained integral equation has a log singular kernel. Interpolation equation for the dislocation functions (the undetermined functions in the integral equations) is proposed. Numerical examination is used to demonstrate the efficiency of the present technique, and a number of numerical examples are given.  相似文献   

14.
The flow of a thin plastic layer between two rigid plates approaching each other in the normal direction is considered. The kinematics of plastic layer flow is studied. An evolution equation describing the free boundary of the flow region is derived. The similarity solutions to this equation are analyzed. It is shown that the evolution equation can be reduced to a particular case of the nonlinear heat conduction equation. New exact particular solutions to the evolution equation are obtained using the variable separation method and the method of self-similar transformations.  相似文献   

15.
舒仲周 《力学学报》2001,33(5):655-660
采用K类函数法从非线性大系统集结出损失最小(相对已取得的矢量Lyapunov函数而言)的比较方程(自治非线性的),并从中取出相对简单的核方程。对后者以单调倾负曲线为脊柱构造了箱体Lyapunov函数,判定了大系统的渐近稳定性。所得判据是核方程已知量的代数显式,便于应用。  相似文献   

16.
粘弹性固体的精细积分有限元算法   总被引:3,自引:0,他引:3  
粘弹性固体本构方程的数学表达式分为微分型和积分型两种,其数值求解主要是时域上离散计算。文中从微分型表达式出发导出其状态空间方程的数学表达式,通过严格推导论证了它与微、积分型表达式的等价性;引入状态空间方程,从而利用精细积分格式来求解粘弹性固体本构方程;给出了粘弹性固体本构方程的精细积分有限元算法,为求解粘弹性固体本构方程的数值解提供了一个新的途径,具有计算简便,求解精度高等优点。  相似文献   

17.
The Ostrovsky equation is an adaptation of the Korteweg-de Vries equation widely used to describe the effect of rotation on surface and internal solitary waves. It has been shown that the effect of rotation is to destroy such solitary waves in finite time due to the emission of trailing radiation. Here this issue is re-examined for a regularised Ostrovsky equation. The regularisation is necessary to remove an anomaly in the Ostrovsky equation whereby there is a discontinuity in the mass field at the initial moment. It is demonstrated that in the regularised Ostrovsky equation there is a rapid adjustment of the mass which is transported a large distance in the opposite direction to that in which the solitary wave propagates.  相似文献   

18.
A simple microstructure model is used to describe a fluid-filled open-cell foam. In the simplest case it consists of parallel elastic plates with gaps between them, which are filled with a Newtonian fluid. We assume that the load applied to this model material is uniaxial. The constitutive equation is formulated with the pressure of the fluid as an inner variable. The model yields an evolutional equation for the fluid pressure which itself is a field equation, that is a partial differential equation in time and space coordinates. This differential equation is solved for an instantaneously applied constant load and for a harmonically oscillating load. The solution of the differential equation, in combination with the constitutive equation leads to a relation between mean applied load and global strain of the test specimen. Finally, we obtain the creep compliance and the complex modulus of the foam material, respectively. The influence of different geometries of the foam and of different material behaviour of the matrix and fluid on the creep compliance and the complex modulus is discussed.  相似文献   

19.
第二类拉格朗日方程在求解复杂动力学问题中有着广泛的应用,其特点是:只要求出系统在一般位置时的动能及相应于各广义坐标的广义力,经过程序化的求导运算就可获得控制系统的动力学方程。正是因为需要对系统的动能进行求导运算,第二类拉格朗日方程不能在系统的特殊位置求写系统的动能,而求写系统在一般位置时的动能很多情况下是一件不容易的事情,这正是应用拉格朗日方程的最大障碍。我们经过理论分析发现对无初速释放动力学问题,第二类拉格朗日方程提供了简便的求解途径。  相似文献   

20.
In this paper, we study the existence and uniqueness of a degenerate parabolic equation, with nonhomogeneous boundary conditions, coming from the linearization of the Crocco equation [12]. The Crocco equation is a nonlinear degenerate parabolic equation obtained from the Prandtl equations with the so-called Crocco transformation. The linearized Crocco equation plays a major role in stabilization problems of fluid flows described by the Prandtl equations [5]. To study the infinitesimal generator associated with the adjoint linearized Crocco equation – with homogeneous boundary conditions – we first study degenerate parabolic equations in which the x-variable plays the role of a time variable. This equation is doubly degenerate: the coefficient in front of ∂x vanishes on a part of the boundary, and the coefficient of the elliptic operator vanishes in another part of the boundary. This makes very delicate the proof of uniqueness of solution. To overcome this difficulty, a uniqueness result is first obtained for an equation in which the elliptic operator is symmetric, and it is next extended to the original equation by combining an iterative process and a fixed point argument (see Th. 4.9). This kind of argument is also used to prove estimates, which cannot be obtained in a classical way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号