首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
基于对氢气燃烧火焰颜色的不同解释,从焰色反应、火焰温度、气体流速等3方面影响因素设计方案进行实验研究,得出影响氢气火焰颜色的主要因素是气流速度、火焰温度及药品的焰色反应。巧用球形干燥管既控制气流速度、又控制火焰温度的特点,设计出可以观察到氢气燃烧火焰呈明显蓝色的演示装置。用可现取的仪器药品、可执行的实验方案、可重现的实验现象、可检验的实验结果,验证了教材中关于氢气燃烧火焰颜色的论述,突破了实际操作中氢气燃烧颜色不易观察的局限。  相似文献   

2.
王彬彬  邱榕  蒋勇 《物理化学学报》2008,24(7):1137-1142
针对氢气添加的LPG(液化石油气)+空气预混火焰结构进行了数值研究, 详细计算了在含氢比a为0%到45%、稀释引子D为21%到16%条件下的自由蔓延火焰, 得到了不同燃烧条件(φ=0.7-1.4)下的绝热燃烧速率变化规律. 由于LPG中的主要成分为丙烷和丁烷, 作者针对C3和C4物质提出了详细化学反应动力学系统, 并针对氢气添加的丁烷燃烧过程进行了数值计算, 得到了与实验相一致的结果, 验证了改进的详细化学机理的有效性. 此外, 进一步计算了对撞双火焰的加氢LPG火焰, 更加深入地探讨了火焰拉伸对燃烧稳定性和温度的影响, 重点研究了φ在0.5到0.7的稀薄燃烧, 验证了氢气添加可以有效提高稀薄燃烧条件下熄火拉伸率, 扩大稀薄燃烧的极限, 增加火焰的稳定性.  相似文献   

3.
涂华民 《化学教育》2016,37(14):78-81
燃烧是一种复杂的物理化学过程,所形成火焰颜色与参与反应物种、反应条件等因素有关。通过对硫燃烧形成火焰颜色的分析,阐明这类链式氧化还原反应在不同反应条件下所形成火焰颜色差异的原因。  相似文献   

4.
氨燃烧及反应机理研究进展   总被引:1,自引:0,他引:1  
现今的一系列环境和能源问题迫使人类急需寻找清洁的燃料以替代传统的化石燃料。氨作为一种富氢的无碳燃料,具有能量密度高、成本低、储运安全等优势,近年来受到了越来越多学者的关注,成为了一个研究热点。本文介绍了氨燃料的物化特性及燃烧特性,分析了氨与各种燃料混合燃烧在燃烧速度、火焰结构、污染物形成等方面的表现以及在发动机的应用情况,详述了氨燃烧机理及动力学模型的研究现状,指出有待进一步研究的问题并展望了氨燃烧研究的发展方向。  相似文献   

5.
张帆  尧命发 《物理化学学报》2016,32(8):1941-1949
采用三维直接数值模拟方法研究了一个类似于部分预混燃烧(PPC)发动机条件下高辛烷值燃料PRF70的着火过程。文章采用了简化的PRF化学动力学机理,包含33个组分和38步基元反应。计算中根据发动机的几何尺寸和真实运行工况加入了气缸内压缩/膨胀的效果,并考虑了燃料的两次喷射,其中第一次喷射形成了较均匀的混合气,第二次燃料喷射增加了混合物分层。研究发现,PPC的燃烧过程非常复杂,是均质压燃、预混燃烧和扩散燃烧三种主要燃烧模式的结合。在两次燃料喷射之间的区域为近化学计量比燃烧,是氮氧化物的生成区;而在化学计量比(φ)大于2的区域,混合不充分聚集了大量未燃碳氢和CO。文章使用Marching cube算法捕捉了三维火焰锋面随时间的变化。最后,使用反应锋面上高斯曲率(kg)与平均曲率(km)的联合概率密度函数(PDF)以及平均曲率随时间变化的概率密度函数,揭示了球形火焰锋面和马鞍形火焰锋面的存在,前者占主要地位,并且随着燃烧的进行,负曲率增加,主要是因为中心的燃料浓区在逐渐消耗。  相似文献   

6.
将氧化石墨在140℃的DMF溶液中反应90 min,得到石墨烯和具有稳定蓝色荧光发射能力的石墨烯量子点。随激发波长的增大,石墨烯量子点发射光谱红移,强度逐渐降低。在DMF溶液中,石墨烯量子点对Fe~(3+)具有较强地选择性和灵敏度,与Fe3+作用后435 nm处的蓝色荧光减弱,578 nm处荧光增强,溶液颜色也由黄色变为微红色。探针的荧光比率I435/I578呈现很好的波尔兹曼非线性关系,可用于选择性识别和检测Fe~(3+)。  相似文献   

7.
本文介绍油煤混合燃料(COM)火焰在不同容积热负荷和不同过量空气系数下的辐射热流和黑度的试验研究结果。试验是在浙江大学的COM 燃烧试验炉中进行的。试验结果表明,沿着试验炉的长度方向,COM 火焰具有两个辐射热流峰值。在同样的过量空气系数条件下比较COM 火焰和重油火焰的黑度,发现在COM火焰根部的黑度小于重油火焰,但当火焰长度超过x/L=0.35以后,重油火焰黑度很快下降而小于COM 火焰黑度。  相似文献   

8.
在过氧化氢1.2 mol/L、丙二酸0.05 mol/L、硫酸锰0.006 7 mol/L、碘酸钾0.067 mol/L、淀粉0.01%的溶液中逐滴滴加适量浓硫酸,反应液呈现从黄色到蓝色相互交替的颜色震荡现象。提出了以碘离子为核心,不同价态的碘化合物作为媒介,溶液内各物质的浓度发生周期性变化的反应机理。研究结果表明当p H值处于2.05~2.35之间时,溶液可以达到黄色与蓝色双稳态的平衡,震荡时间根据p H差异可以维持3~5 min,最终变为蓝色。  相似文献   

9.
陈文婷  蒋勇  邱榕 《物理化学学报》2010,26(6):1481-1487
通过对贫燃条件下(燃料与空气化学计量比φ=0.60-0.80)的甲烷/一氧化碳/空气火焰结构进行数值模拟,研究燃料中一氧化碳添加量对层流燃烧速度、氮氧化合物的排放以及熄火拉伸率的影响.随着燃料中一氧化碳添加量的不断增加,层流燃烧速度有所下降,这与燃料中加入氢气产生的现象有所不同.为了解释这一现象,本文深入探讨了层流燃烧速度与H+OH浓度峰值之间的关系,结果表明,一氧化碳的增加导致H+OH浓度峰值呈线性下降,与层流燃烧速度下降趋势完全一致.随着一氧化碳的增加,氮氧化合物排放量有所下降.探讨了NO的生成机理,且由敏感性分析得到生成NO的重要反应,分析当一氧化碳量增大时,NO的浓度以及重要反应的NO生成率均下降.此外,利用数值模拟求解径向拉伸率,深入分析燃料中添加一氧化碳时拉伸率对贫燃火焰稳定性的影响.由计算结果得到熄火拉伸率,发现燃料中一氧化碳的添加在一定程度上能够增强火焰的稳定性.  相似文献   

10.
与碳氢燃料相比, 含氧燃料在燃烧过程中容易生成醛类等非常规污染物, 这些含氧中间体的生成与燃料中氧的释放密切相关. 本文从燃料氧迁移路径的角度来研究含氧中间体的生成特性及规律. 并采用分子束质谱结合真空紫外同步辐射光电离技术(SVUV-PIMS)探测了丙烷、二甲醚、乙醇三种低压预混火焰中的主要含氧中间体, 并获得了其摩尔分数分布. 结果表明: 与外部氧相比, 燃料氧更易形成含氧中间体. 生成的最主要的含氧中间体取决于燃料氧在分子中的结构. 二甲醚火焰中甲醛为最主要的含氧中间体; 乙醇火焰中乙醛为最主要的含氧中间体; 丙烷火焰中, 甲醛和乙醛的含量均很小, 但碳氢中间体乙烯、乙炔和丙烯的含量较高.  相似文献   

11.
Room temperature ionic liquids (ILs) that can exhibit a colorimetric response to moisture in the air are rarely reported in the literature. In this study, an azophenolic IL solution exhibited a spontaneous a colorimetric response, driven by the formation of hydrogen bonding between the [PhN=NPhO] anion and moisture in the air. This phenomenon was clearly understood using ultraviolet-visible (UV-Vis) absorption spectroscopy, nuclear magnetic resonance (NMR) spectra, experimental data, and theoretical calculations. Specifically, in the UV-Vis absorption spectra, absorption around 455 nm decreased, while the band around 343 nm increased in the IL CHCl3 solution as time progressed; this was accompanied by a color change from orange to faint yellow. This spontaneous, self-responsive process was further observed using 1H NMR data. When the IL solution was placed with sufficient time, all the 1H NMR peaks of the azophenolic anion shifted downfield, but no new signals appeared in the upfield region. The reason for this was easily identified as the stimuli in the air, such as CO2 and moisture. When pure CO2 was bubbled through the IL CHCl3 solution, the solution color changed from its original orange to light orange, but could not change further to faint yellow, which ruled out CO2 gas as a stimulus. When a small amount of water was gradually added to the IL solution (MeCN solvent), the absorption band around 474 nm decreased, coupled with an increase in the absorption band around 347 nm. This was accompanied by a color change from orange to faint yellow, which was almost identical to the self-responsive process in CHCl3 and CCl4. Moreover, two cuvettes of IL CHCl3 solution were placed under relative humidities of 28% and 100%, respectively; the IL CHCl3 solution required a much longer time to exhibit a complete color change from orange to faint yellow under a lower relative humidity, demonstrating that moisture is the most likely stimulus triggering the self-responsive color change of the IL solution. As revealed by the Gaussian 09 program at the B3LYP/6-31++G(p, d) level, the distance between the oxygen atom on the azophenolic anion and the hydrogen atom on the H2O molecule was 0.174 nm, and the corresponding angle was 171.12°. Furthermore, the atomic dipole moment corrected Hirshfeld (ADCH) charge of the oxygen atom on the azophenolic anion was −0.52, and it increased to −0.62 after the azophenolic anion interacted with the H2O. Reduced density gradient analysis revealed that the spike corresponding to O∙∙∙H―O for the IL-H2O complex was located at around −0.04 a.u.. All the above data indicate that the presence of hydrogen bonding rendered the IL solution responsive to the moisture stimulus, and this response was accompanied by a color change that was visible to the naked eye. To the best of our knowledge, this is the first demonstration of a colorimetric change in an IL solution in response to moisture. We hope this work can help us to gain insight into some seemingly abnormal phenomena that occur during the research process.  相似文献   

12.
Controlling assembled structures of π-conjugated liquid-crystalline molecules is of great interest in the development of stimuli-responsive luminescent materials due to their molecular motility in the ordered states. Herein, we describe a mechanoresponsive hydrogen-bonded benzodithiophene liquid-crystalline molecule that exhibits a tricolor photoluminescence switching at ambient temperature. The compound shows a shear-induced phase transition from a rectangular columnar to a metastable optically anisotropic mesophase, which is accompanied by the luminescent color change from yellow to sky-blue. The metastable mesophase exhibits a time-responsive transformation to another metastable mesophase showing a blue-green emission through isothermal aging at room temperature. The luminescent color of aged sample reverts back to the initial yellow color by thermal annealing at 150 °C. These dynamic structural changes accompanied by the emission color changes are governed by distinct π-stacking modes and hydrogen-bonded patterns. The shear-induced luminescent color change from yellow to blue is found to occur above the shear strain of 390 % at which the shear stress is 2.4×105 Pa as determined from dynamic viscoelastic measurements.  相似文献   

13.
合成了N,N-二(N-亚甲基琥珀酰亚胺)甘氨酸,并以元素分析、IR、1HNMR和质谱进行表征.实验中发现铕(Ⅲ)与N,N-二(N-亚甲基琥珀酰亚胺)甘氨酸和1,10-二氮杂菲形成的配合物具有光致变色的性质.在铕变色物种里,铕离子与N,N-二(N-亚甲基琥珀酰亚胺)甘氨酸中的羧基,1,10-二氮杂菲中的氮原子相结合,同时也可能与水分子和羟基基团结合.  相似文献   

14.
A conventional diesel burner has arisen several shortcomings, such a large supply of air for a stoichiometric combustion, and a long heat-up time to reach the light-off temperature of catalyst in a diesel after-treatment system. This study shows a promising potential of using a plasma reformer for staged diesel combustion with minimized air and fuel consumption, and increased the flame stability with low NOx emission. A working principle of a plasma fuel reformer for staged combustion is explained in detail by both visualizing the plasma-assisted flame and analyzing the gas products. The concentrations of H2, CO, NOx and the unburned total hydrocarbons were measured by gas chromatography and a commercial gas analyzer. Considering the operating condition of diesel exhaust gas is too harsh to maintain a stable diesel flame with a conventional diesel burner, plasma fuel reformer has distinctive advantages in stable flame anchoring under the condition of low oxygen concentration and fast flow speed. The re-ignition and stable flame anchoring by entrapment of oxygen in exhaust gas is mainly attributed to the low ignition energy and high diffusion velocity of hydrogen molecule. From an economic point of view, plasma reformer is also the only technology which can use only 1/3–1/8 of the air required for the stoichiometric burning of a conventional diesel burner. A conventional burner was simulated and analyzed to consume up to 30 % more fuel compared to the plasma reformer with the staged combustion to get the same level of temperature elevation in a real diesel engine scale.  相似文献   

15.
The transport of oxygen by diffusion from the environment into a gas stream was investigated as a model for the analogous process in a diffusion flame. The amount transported at steady-state conditions depended on the flow rate, diameter, and spatial orientation of the gas stream. A change of the same extrinsic parameters in a diffusion flame caused changes of burner surface temperature, maximum flame temperature, and flame height. These responses were correlated and yielded an overall activation energy of the rate-controlling reaction step in the combustion process equal to 49 kcal/mole. This value was the same for several types of diffusion flames examined and appeared to be associated with the CO/CO2 conversion process at the high-temperature flame boundary. Flame quenching was demonstrated to occur at a minimum fuel flow rate and minimum environmental oxygen concentration which were characteristic for a given fuel. Quenching conditions were related to the diffusion rate of oxygen into the product effluent stream. Quenching of a polymer flame by depletion of environmental oxygen was governed by the same processes. The effect of extrinsic parameters on polymer flames is discussed in Part II.  相似文献   

16.
A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.  相似文献   

17.
In this paper, we undertake an analytical and numerical investigation of the linear stability and properties of travelling nonadiabatic combustion wave for the case of nonzero ambient temperature. Here we consider premixed fuel with one-step exothermic reaction described by Arrhenius law. The speed of the front is estimated analytically by employing the matched asymptotic expansion approach and numerically using the shooting and relaxation methods. It is shown that increasing the ambient temperature results in the growth of both the flame speed and the region of existence of the travelling wave solutions in the parameter space. The linear stability of the travelling wave solution is investigated analytically by using the matched asymptotic expansion method and numerically by employing the Evans function approach. We demonstrate that by increasing the ambient temperature the stability of the propagating wave can also be increased.AMS subject classification: cation: 35K57, 80A25  相似文献   

18.
研究了[Ru(phen)2(H2biim)](PF6)2(1)与各种阴离子之间的选择性作用, 发现配合物1与Cl-, Br-, I-, NO3-, HSO4-和H2PO4-阴离子之间存在氢键作用. OAc-阴离子与配合物1作用, 由于强的氢键作用使H2biim上的一个H转移到OAc-上, 使配合物1脱去一个质子, 形成{[Ru(phen)2(H2biim)](OAc)}结合体, 溶液颜色由黄色变为橙棕色. 由于F-能形成非常稳定的HF2-, 配合物1逐步脱去2个质子, 溶液颜色由黄色变为紫色, 因此可作为裸眼检测阴离子的识别剂.  相似文献   

19.
Abstract— A model is developed for the optimization of signal-to-noise ratio for the detection of bioluminescence by fireflies during twilight. The relative degree of optimization is derived in terms of a dimensionless ratio, a biologically effective adaptation. The numerical values of this adaptation can be used to predict the sequence of adaptations of both visual spectral sensitivities and bioluminescence spectral emissions that result in the range of colors of bioluminescence of fireflics from green through yellow. It is shown that a narrowing of visual spectral sensitivity via a screening pigment pathway in order to discriminate against green ambient light is more efficient than a shift in visual spectral sensitivity via change in the opsin photoprotein. The model predicts that the range of wavelengths for the peak intensities of bioluminescence for North American fireflies should be between 550 and 580 nm and provides the physical basis for the observations that in general dark-active firefly species cmit green bioluminescence and twilight-active firefly species emit yellow bioluminescence.  相似文献   

20.
It is unfortunately not too rare to find that fire investigators estimate flame temperatures by looking up a handbook value, which turns out to be the adiabatic flame temperature. Generally, the measurement of temperature in an industrial furnace is difficult, time consuming and expensive. Combustion of bagasse has its own special set of problems which appear to be due largely to the high moisture content and varying particle sizes of the fuel. The present experimental investigation is carried out to estimate the location of reaction zones and temperature fields in a bagasse fired furnace. Furnace is modeled by three dimensional CFD codes. Both experimental and the computational results show a considerable delay to ignition due to the drying of fuel. Also the location of maximum temperature zones and the pattern of flame propagation inside the furnace are clearly indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号