首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

2.
A silver hexacyanoferrate nanoparticles/carbon nanotubes modified glassy carbon electrode was fabricated and then successfully used for the simultaneous determination of ascorbic acid, dopamine and uric acid by cyclic voltammetry. A detailed investigation by transmission electron microscopy (TEM) and electrochemistry was performed in order to elucidate the preparation process and properties of the nanocomposites. The size of silver hexacyanoferrate nanoparticles was examined by TEM around 27 nm. Linear calibration plots were obtained over the range of 4.0 × 10−6-7.8 × 10−5, 2.4 × 10−6-1.3 × 10−4 and 2.0 × 10−6-1.5 × 10−4 mol L−1 with detection limits of 4.2 × 10−7,1.4 × 10−7 and 6.0 × 10−8 mol L−1 for ascorbic acid, dopamine and uric acid, respectively. The practical analytical utilities of the modified electrode were demonstrated by the determination of ascorbic acid, dopamine and uric acid in urine and human blood serum samples.  相似文献   

3.
研究了十六烷基三甲基溴化铵(CTMAB)/多壁碳纳米管修饰玻碳电极的制备以及多巴胺和抗坏血酸在该修饰电极上的电化学行为。在CTMAB和多壁碳纳米管的协同作用下,该修饰电极对多巴胺和抗坏血酸均具有显著的催化氧化作用,多巴胺和抗坏血酸的氧化峰电位分别为223mV和15mV,实现了在抗坏血酸共存时测定多巴胺。在pH7.0的磷酸盐缓冲溶液中,多巴胺和抗坏血酸的线性范围分别为2.0×10-6~2.0×10-3mol/L和4.0×10-5~1.0×10-2mol/L,检出限分别为6.0×10-7mol/L和1.0×10-5mol/L。  相似文献   

4.
A new type of tryptophan-functionalized graphene nanocomposite (Trp-GR) was synthesized by utilizing a facile ultrasonic method via ππ conjugate action between graphene (GR) and tryptophan (Trp) molecule. The material as prepared had well dispersivity in water and better conductivity than pure GR. The surface morphology of Trp-GR was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA), and uric acid (UA) were investigated by cyclic voltammetry (CV) on the surface of Trp-GR. The separation of the oxidation peak potentials for AA–DA, DA–UA and UA–AA was about 182 mV, 125 mV and 307 mV, which allowed simultaneously determining AA, DA, and UA. Differential pulse voltammetery (DPV) was used for the determination of AA, DA, and UA in their mixture. Under optimum conditions, the linear response ranges for the determination of AA, DA, and UA were 0.2–12.9 mM, 0.5–110 μM, and 10–1000 μM, with the detection limits (S/N = 3) of 10.09 μM, 0.29 μM and 1.24 μM, respectively. Furthermore, the modified electrode was investigated for real sample analysis.  相似文献   

5.
A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu2+ functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200 mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0 × 10−7–1.9 × 10−5 M for DA and 2.0 × 10−5–2.0 × 10−4 M for AA. Detection limits (<!-- no-mfc -->S/N<!-- /no-mfc --> = 3) were estimated to be 4.1 × 10−8 M for DA and 1.1 × 10−5 M for AA, respectively.  相似文献   

6.
Simultaneous determination of epinephrine(EP)and dopamine(DA)at 2,3-dimercaptosuccinic acid(DMSA)modified electrode was studied.The oxidation peaks of the mixture of EP and DA appeared at the same potential,but the cathodic peak currents were only linear to the concentration of DA,whereas the anodic peak currents were equal to the sum of individual anodic peak currents of EP and DA.Therefore,a novel electrochemical method for the simultaneous determination of EP and DA at a DMSA modified electrode(DMSA/A...  相似文献   

7.
A carbon paste electrode modified with electropolymerized fills of isonicotinic acid was developed.The modified electrode shows excellent electrocatalytic activity toward the oxidation of both dopamine(DA)and epinephrine(EP).Separation of the reduction peak potentials for dopamine and epinephrine was about 357 mV in pH 5.3 phosphate buffer solution(PBS)and the character was used for the detection DA and EP simultaneously.The peak currents increase linearly with DA and EP concentration over the range of 8.0×10-5 to 7.0×10-4 mol/L and 5.0×10-6 to 1.0×10-4 mol/L with detection limits of 2 × 10-5 and 1×10-6 mol/L,respectively.The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid(AA).  相似文献   

8.
A poly(caffeic acid) thin film was deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. The poly(caffeic acid)-modified electrode was used for the determination of ascorbic acid (AA), dopamine (DA), and their mixture by cyclic voltammetry. This modified electrode exhibited a potent and persistent electron-mediating behavior followed by well-separated oxidation peaks toward AA and DA at a scan rate of 10 mV s−1 with a potential difference of 135 mV, which was large enough to determine AA and DA individually and simultaneously. The catalytic peak current obtained was linearly dependent on the AA and DA concentrations in the range of 2.0 × 10−5−1.2 × 10−3 and 1.0 × 10−6−4.0 × 10−5 mol L−1 in 0.15 mol L−1 phosphate buffer (pH 6.64). The detection limits for AA and DA were 9.0 × 10−6 and 4.0 × 10−7 mol L−1, respectively. The modified electrode shows good sensitivity, selectivity, and stability and has been applied to the determination of DA and AA in real samples with satisfactory results.  相似文献   

9.
Wei J  He JB  Cao SQ  Zhu YW  Wang Y  Hang GP 《Talanta》2010,83(1):190-196
A nonionic poly(2-amino-5-mercapto-thiadiazole) film was electrodeposited on a solid carbon paste electrode via a potential scanning procedure, and used for amperometric sensing of ascorbic acid (AA), dopamine (DA) and serotonin (ST). The highly electrocatalytic activity of the sensor to the three analytes was demonstrated from the sensitive and well separated voltammetric signals. The polymer film did not show significant accumulation effect on all the three species, reducing the fouling and deactivation of the electrode surface as well as the mutual interference among the analytes. The sensor achieved amperometric sensitivities of 1.92 nA (nmol L−1)−1 cm−2 to AA in the linear range of 0.025-1.95 μmol L−1, 3.76 nA (nmol L−1)−1 cm−2 to DA and 7.00 nA (nmol L−1)−1 cm−2 to ST both in the linear range of 0.02-1.56 μmol L−1. The lowest detection limits were found to be 1.5, 0.7 and 0.4 nmol L−1 for AA, DA and ST, respectively. This sensor was successfully employed for the successive determination of AA, DA and ST in pharmaceutical samples. The good antifouling property and reproducibility of the proposed sensor can be attributed to the nonionic polymer film without electrostatic attraction to the ionized species in the solutions.  相似文献   

10.
采用循环伏安法(CV)制备了聚钙羧酸(PCCA)膜修饰的碳糊电极(CPE)。考察了电极对多巴胺(DA)、尿酸(UA)的电氧化催化性能。结果显示,聚钙羧酸膜修饰碳糊电极(PCCA/CPE)对DA有良好的电催化效果,DA呈现出一对准可逆的氧化还原峰,氧化峰电流与DA浓度在3.0×10-7~1.0×10-4mol/L范围内呈线性关系,检出限为1×10-7mol/L(S/N=3)。使用微分脉冲伏安法(DPV),DA和UA在PCCA/CPE上的氧化峰能完全分离(ΔEp=192 mV),且峰电流与浓度均呈现良好的线性关系,可实现对DA和UA的同时测定。实验还进行了实际样品测定。  相似文献   

11.
The present study reports the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.20 M phosphate buffer solution (pH 5.0) using electropolymerized ultrathin film of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) on glassy carbon (GC) electrode. The bare GC electrode does not separate the voltammetric signals of AA, DA and UA. However, electropolymerized AMT (p-AMT) modified GC electrode not only resolved the voltammetric signals of AA, DA and UA but also dramatically enhanced their oxidation peak currents when compared to bare GC electrode. The enhanced oxidation currents for AA, DA and UA at p-AMT modified electrode are due to the electrostatic interactions between them and the polymer film. Using amperometric method, we achieved the lowest detection of 75 nM AA, 40 nM DA and 60 nM UA at p-AMT modified electrode. The amperometric current was linearly increased from 200 nM to 0.80 mM for each AA, DA and UA and the lowest detection limit was found to be 0.92, 0.07 and 0.57 nM, respectively (S/N = 3). The practical application of the modified electrode was demonstrated by the determination of DA in dopamine hydrochloride injection.  相似文献   

12.
Palraj Kalimuthu 《Talanta》2010,80(5):1686-319
This paper describes the simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and xanthine (XN) using an ultrathin electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 5.0). Bare GC electrode failed to resolve the voltammetric signals of AA, DA, UA and XN in a mixture. On the other hand, the p-ATD modified electrode separated the voltammetric signals of AA, DA, UA and XN with potential differences of 110, 152 and 392 mV between AA-DA, DA-UA and UA-XN, respectively and also enhanced their oxidation peak currents. The modified electrode could sense 5 μM DA and 10 μM each UA and XN even in the presence of 200 μM AA. The oxidation currents were increased from 30 to 300 μM for AA, 5 to 50 μM for DA and 10 to 100 μM for each UA and XN, and the lowest detection limit was found to be 2.01, 0.33, 0.19 and 0.59 μM for AA, DA, UA and XN, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of AA, UA and XN in human urine samples.  相似文献   

13.
《Comptes Rendus Chimie》2014,17(5):465-476
A novel modified multiwall carbon nanotubes paste electrode with sodium dodecyl sulfate as a surfactant (SDS) has been fabricated through an electrochemical oxidation procedure and was used to electrochemically detect dopamine (DA), ascorbic acid (AA), uric acid (UA), and their mixture by cyclic voltammetry (CV) and differential voltammetry (DPV) methods. Several factors affecting the electrocatalytic activity of the hybrid material, such as the effect of pH, of the scan rate and of the concentration were studied. The bare carbon nanotubes paste electrode (BCNTPE) and SDS-modified carbon nanotubes paste electrode (SDSMCNTPE) were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray spectroscopy (EDX). Using the CV procedure, a linear analytical curve was observed in the 1 × 10−6–2.8 × 10−5 M range with a detection limit at 3.3 × 10−7 M in pH 6.5, 0.2 M phosphate buffer solutions (PBS).  相似文献   

14.
A new rapid, convenient and sensitive electrochemical method based on a gold nanoparticles modified ITO (Au/ITO) electrode is described for the detection of dopamine and serotonin in the presence of a high concentration of ascorbic acid. The electrocatalytic response was evaluated by differential pulse voltammetry (DPV) and the modified electrode exhibited good electrocatalytic properties towards dopamine and serotonin oxidation with a peak potential of 70 mV and 240 mV lower than that at the bare ITO electrode, respectively. The selective sensing of dopamine is further improved by applying square wave voltammetry (SWV) which leads to the lowering of its detection limit. A similar effect on the detection limit of serotonin was observed on using SWV. Linear calibration curves are obtained in the range 1.0 × 10−9-5.0 × 10−4 M and 1.0 × 10−8-2.5 × 10−4 M with a detection limit of 0.5 nM and 3.0 nM for dopamine and serotonin, respectively. The Au/ITO electrode efficiently determines both the biomolecules simultaneously, even in the presence of a large excess of ascorbic acid. The adequacy of the developed method was evaluated by applying it to the determination of the content of dopamine in dopamine hydrochloride injections. The proposed procedure was also successfully applied to simultaneously detect dopamine and serotonin in human serum and urine.  相似文献   

15.
A simple and reliable method for simultaneous electrochemical determination of ascorbic acid (AA) and dopamine (DA) is presented in this work. It was based on the use of the cationic surfactant cetylpyridinium chloride (CPC) that enables the separation of the oxidation peaks potential of AA and DA. Cyclic voltammetry (CV) as well as pulse differential voltammetry (PDV) were used in order to verify the voltammetric behaviour in micellar media. In the cationic surfactant CPC, a remarkable electrostatic interaction is established with negatively charged AA, as a consequence, the oxidation peak potential shifted toward less positive potential and the peak current increased. On the other hand, the positively charged DA is repelled from the electrode surface and the oxidation peak potential shifts toward more positive potential in comparison to the bare electrode. Therefore, the common overlapped oxidation peaks of AA and DA can be circumventing by using CPC. Parameter that affects the Epa and Ipa such as CPC concentration and pH were studied. Under optimised conditions, the method presented a linear response to AA and DA in the concentration range from 5 to 75 μmol L−1 and 10 to 100 μmol L−1, respectively. The proposed method was successfully applied to the simultaneous determination of AA and DA in dopamine hydrochloride injection (DHI) samples spiked with AA.  相似文献   

16.
Thiagarajan S  Chen SM 《Talanta》2007,74(2):212-222
A novel biosensor was fabricated by electrochemical deposition of platinum and gold nanoparticles (nanoAu) with l-Cysteine on glassy carbon electrode. It was found that the nanoAu particle size distribution range was (50-80 nm), and the platinum particle size range was (200-300 nm). The hybrid film could be produced on gold and transparent indium tin oxide electrodes for different kind of studies such as electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) and electrochemical studies. The PtAu hybrid film was applied to the electro catalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at pH 4.0 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The modified electrode was quite effective not only to detect DA, AA and UA individually but also in simultaneous determination of these species in a mixture. The overlapping anodic peaks of DA, AA and UA were resolved into three well-defined voltammetric peaks in CV and DPV. The catalytic peak currents obtained from CV and DPV increased linearly with concentration. The relative standard deviation (% R.S.D., n = 10) for AA, DA and UA were less than 2.0% and DA, AA and UA can be determined in the ranges of 0.103-1.65, 0.024-0.384 and 0.021-0.336 mM, respectively. In addition, the modified electrode also shows good sensitivity, and stability. Satisfactory results were achieved for the determination of DA, AA and UA in dopamine injection solution, vitamin C tablets and human urine samples.  相似文献   

17.
《Comptes Rendus Chimie》2015,18(4):438-448
A highly sensitive method was investigated for the simultaneous determination of acetaminophen (AC), dopamine (DA), and ascorbic acid (AA) using a PbS nanoparticles Schiff base-modified carbon paste electrode (PSNSB/CPE). Differential pulse voltammetry peak currents of AC, DA and AA increased linearly with their concentrations within the ranges of 3.30 × 10−8–1.58 × 10−4 M, 5.0 × 10−8–1.2 × 10−4 M and 2.50 × 10−6–1.05 × 10−3 M, respectively, and the detection limits for AC, DA and AA were 5.36 × 10−9, 2.45 × 10−9 and 1.86 × 10−8 M, respectively. The peak potentials recorded in a phosphate buffer solution (PBS) of pH 4.6 were 0.672, 0.390, and 0.168 V (vs Ag/AgCl) for AC, DA and AA, respectively. The modified electrode was used for the determination of AC, DA, and AA simultaneously in real and synthetic samples.  相似文献   

18.
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1.5 V into 0.1 mol L−1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), ΔEAA-DA = 222 mV; ΔEAA-UA = 360 mV and ΔEDA-UA = 138 mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 × 10−6 mol L−1 for uric acid, 1.3 × 10−5 mol L−1 for ascorbic acid and 1.1 × 10−7 mol L−1 for dopamine, with sensitivities of (7.7 ± 0.5), (0.061 ± 0.001) and (9.5 ± 0.05) A mol−1 cm−2, respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed.  相似文献   

19.
采用循环伏安法研究去甲肾上腺素(NE)和抗坏血酸(AA)在4-(2-吡啶偶氮)间苯二酚(PAR)导电聚合膜修饰电极上的电化学行为;以差示脉冲伏安法(DPV)对二者进行测定,发现PAR修饰电极对NE和AA有很强电催化作用,明显增强了电极反应的可逆性及峰电流。在pH 6.0磷酸盐缓冲液(PBS)中,NE氧化峰电流与其浓度在6.25×10-7~6.25×10-5mol/L范围内呈良好的线性关系,AA氧化峰电流与其浓度在1.0×10-6~3.0×10-4mol/L范围内呈良好的线性关系,检出限分别为5.0×10-8mol/L和5.0×10-7mol/L。该PAR膜修饰电极可对NE和AA进行单独或同时的测定,并用于实际样品重酒石酸去甲肾上腺素针剂和维生素C针剂的检测。  相似文献   

20.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号