首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of weakly bending polymers is analyzed on the basis of a Gaussian semiflexible chain model and the fluorescence correlation spectroscopy (FCS) correlation function is determined. Particular attention is paid to the influence of the rotational motion on the decay of the FCS correlation function. An analytical expression for the correlation function is derived, from which the averaged segmental mean square displacement can be determined independent of any specific model for the polymer dynamics. The theoretical analysis exhibits a strong dependence of the correlation function on the rotational motion for semiflexible polymers with typical lengths and persistence lengths of actin filaments or fd viruses. Hence, FCS allows for a measurement of the rotational motion of such semiflexible polymers. The theoretical results agree well with experimental measurements on actin filaments and confirm the importance of large relaxation times.  相似文献   

2.
Nanocontainers (NCs) were prepared from amphiphilic triblock copolymers, having an average molecular weight of around 8000 g/mol, by using previously published preparation methods consisting of dispersing the polymer in an aqueous buffer solution containing molecules for encapsulation. A small molecular weight fluorophore, sulforhodamine B, as well as the fluorescent protein avidin labeled with Alexa 488 were encapsulated, and the resulting nanocontainers were characterized using fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS). Nanocontainer size determination by FCS is very robust and compares well with results obtained from photon correlation spectroscopy: the measured diameters of the polymeric nanocontainers vary between 140 and 172 nm. Encapsulation of fluorescent molecules was determined by evaluating the molecular brightness of nanocontainers with an encapsulated fluorescently labeled protein (avidin-Alexa 488). Results indicate that the number of encapsulated avidin-Alexa 488 molecules corresponds well with the initial concentration of the fluorescently labeled protein and the encapsulated volume. A nanocontainer binding assay was developed using biotinylated fluorescently labeled nanocontainers. Binding of biotinylated nanocontainers to fluorescently labeled streptavidin was followed by fluorescence cross-correlation spectroscopy. The intrinsic dissociation constant, K(d), of labeled streptavidin to the ligand-modified nanocontainers is 1.7 +/- 0.4 x 10(-8) M, and about 1921 +/- 357 molecules of labeled streptavidin are bound to each nanocontainer.  相似文献   

3.
We show that noncovalently bound dye molecules can be used as labels in single-molecule fluorescence experiments for the determination of aggregate formation in standard surfactant systems. Aqueous solutions of sulfosuccinic acid bis(2-ethylhexyl) ester sodium salt, hexadecyltrimethylammonium chloride, and pentaethylene glycol monododecyl ether have been studied by fluorescence correlation spectroscopy using commercially available dyes. The translational diffusion coefficient and the critical micelle concentrations have been determined and compare well to values reported in the literature. The respective charges of the surfactant and of the dye molecule are crucial for the effectiveness of the presented method.  相似文献   

4.
In this paper, we study the fluorescence fluctuation correlation function in structured fluids where the diffusion coefficients of probe molecules have different values depending on the distance from initial position, and we derive two simple expressions. Both of them reproduce the exact numerical results rather accurately. One of the expressions contains a time-dependent diffusion coefficient and has a clear physical meaning. We show a procedure to analyze experimental data using the time-dependent diffusion coefficient which results from crossover from free diffusion inside a mesh to hindered diffusion through mesh structures.  相似文献   

5.
The characterization of interactions between membrane proteins as they take place within the lipid bilayer poses a technical challenge, which is currently very difficult and, in many cases, impossible to overcome. The recent development of a method based in the combination two-color fluorescence cross-correlation spectroscopy with scanning of the focal volume allows the detection and quantification of interactions between biomolecules inserted in biological membranes. This powerful strategy has allowed the quantitative analysis of diverse systems, such as the association between proteins of the Bcl-2 family involved in apoptosis regulation or the binding between a growth factor and its receptor during signaling. Here, we review the last developments to quantify protein/protein interactions in lipid membranes and focus on the use of fluorescence-correlation-spectroscopy approaches for that purpose.  相似文献   

6.
The size, diffusional properties, and dynamics of reverse water-in-oil nanoemulsions, or reverse micelles (RMs), have been widely investigated because of interest in this system as a model for biological compartmentalization. Here, we have employed fluorescence lifetime correlation spectroscopy (FLCS) to reveal the dynamics and sizes of aerosol-OT (AOT)/isooctane RMs using a fluorescent xanthene derivative called Tokyo Green II (TG-II). The dye undergoes a partition and a shift in its tautomeric equilibrium such that the TG-II anion remains in the inner micellar aqueous core, and the neutral quinoid form lies in the interfacial region. By applying FLCS, we specifically obtained the lifetime filtered autocorrelation curves of the anionic TG-II, which shows a characteristic lifetime of approximately 4 ns. Analysis of the FLCS curves provides the diffusion coefficient and hydrodynamic radius of the RMs as well as micelle dynamics in the same experiment. The FLCS curves show dynamics in the microsecond time range, which represents an interconversion rate that changes the distribution of the TG-II neutral and anionic forms in the hydrophobic interface and the water core.  相似文献   

7.
The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe-PEG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe-PEG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces.  相似文献   

8.
We review the principles and applications of statistical filtering in multichannel fluorescence microscopy. This alternative approach to separation of signals from individual fluorophore populations has many important advantages, especially when spectral and/or temporal overlap, or the complicated nature of those signals, makes their discrimination or sorting impossible by means of hardware. This situation is typically encountered for biological samples. This review of well established statistical filtering techniques and of emerging, very promising new methods of analysis reveals remarkable progress in bioanalytical applications of fluorescence microscopy.  相似文献   

9.
We investigated the dye-exchange dynamics between rhodamine 123 (R123), a mitochondrial fluorescent dye, and micelles as membrane mimetic systems. In the presence of neutral micelles (Triton X-100 and Brij 35) R123 partitions between the aqueous solution and the micellar pseudo-phase, undergoing red shift of the absorption and the emission spectra. Fluorescence correlation spectroscopy (FCS) was used to study the dynamics of these systems over an extremely wide time range and at the single-molecule level, yielding information in one and the same experiment about the diffusional dynamics of free and bound rhodamine and about the dye-exchange dynamics as well as several photophysical properties of the rhodamine bound to the micelles. It was found that the entry rate constants are diffusion-controlled, indicating that there are no geometric or orientational requirements for the association of the dye with the micelle. With respect to the dye-exchange dynamics, micelles are found to behave as soft supramolecular cages in contrast to other rigid supramolecular cavities, such as cyclodextrins. The exit rate constants depend on the surfactant and determine the stability of the binding. Single-molecule multiparameter fluorescence detection (MFD) was used to examine the fluorescence properties of individual molecules in comparison to ensembles of molecules. The MFD histograms confirm the fast dye-exchange dynamics observed by FCS and yield mean values of fluorescence lifetimes and anisotropies in agreement with those obtained in bulk measurements.  相似文献   

10.
The exonucleolytic degradation of high-density labeled DNA by exonuclease III was monitored using two-color fluorescence correlation spectroscopy (FCS). One strand of the double stranded template DNA was labeled on either one or two base types and additionally at one end via a 5' Cy5 tagged primer. Exonucleolytic degradation was followed via the diffusion time, the brightness of the remaining DNA as well as the concentration of released labeled bases. We found a hydrolyzation rate of about 11 to 17 nucleotides per minute per enzyme (nt/min/enzyme) for high-density labeled DNA, which is by a factor of about 4 slower than for unlabeled DNA. The exonucleolytic degradation of a 488 base pair long double stranded DNA resulted in a short double stranded DNA segment of 112 ± 40 base pairs (bp) length with two single-stranded tails.  相似文献   

11.
A high-speed capillary electrophoresis mobility shift assay (CEMSA) for determining the binding ratios of DNA-protein complexes in solution is demonstrated. Single molecule fluorescence correlation spectroscopy (FCS) was used to resolve the bound and unbound fluorescently labeled DNA molecules as they flowed continuously through a fused silica capillary under the influence of an applied electric field. Resolution of the bound and unbound complexes was based on the difference in their electrophoretic mobilities, and was accomplished without the need to perform a chemical separation. Data sufficient to perform the analysis was acquired in less than 10 s, compared to the minutes that are normally needed to carry out such measurement via CE separation. The binding ratios were determined with 5 to 10% precision and agreed with the results obtained by CE separation within experimental error. The resolution of the CEMSA based FCS analysis (CEMSA-FCS) was significantly higher than for the analysis performed by conventional diffusional FCS, due to the higher mass sensitivity of the electrophoretic mobility compared to the translational diffusion coefficient. Fluorescently labeled 39-mer single stranded DNA (ssDNA) and the single stranded binding protein (SSB) from Escherichia coli was used as the model system. The dissociation constant of the ssDNA-SSB complex was estimated to be approximately 2 nM based on the CEMSA-FCS analysis.  相似文献   

12.
In this paper, fluorescence correlation spectroscopy (FCS) was applied to measure the size of water-soluble quantum dots (QDs). The measurements were performed on a home-built FCS system based on the Stokes-Einstein equation. The obtained results showed that for bare CdTe QDs the sizes from FCS were larger than the ones from transmission electron microscopy (TEM). The brightness of QDs was also evaluated using FCS technique. It was found that the stability of the surface chemistry of QDs would be significantly improved by capping it with hard-core shell. Our data demonstrated that FCS is a simple, fast, and effective method for characterizing the fluorescent quantum dots, and is especially suitable for determining the fluorescent nanoparticles less than 10 nm in water solution.  相似文献   

13.
Early detection of apoptotic cells via caspase activity is demonstrated with fast response time. Fluorescence correlation spectroscopy (FCS) is used to identify the presence of a cleaved fluorogenic probe based on the fluorescence of rhodamine 110 in Jurkat cells. FCS curves are shown to be markedly different for autofluorescent (non-apoptotic) cells, whereas cells with cleaved probe showed diffusion and molecular brightness characteristic of rhodamine 110. Using FCS measurements, cells were identified as apoptotic on the basis of the presence of autocorrelated fluorescence, average molecular brightness (η), and molecular dwell time (τ D). Apoptotic cells identified in this manner were detected as early as 45 min after induction. Unlike other methods with similar identification times, such as western blotting and electron microscopy, cells remain viable for further analysis. This multi-parameter approach is rapid, flexible, and does not require transfection of the cells prior to analysis, enabling apoptosis to be identified early in a wide variety of cell types.   相似文献   

14.
Fluorescence correlation spectroscopy has been increasingly used in polymer science. In the present perspective, the principles of the method are briefly reviewed, and the temporal and spatial resolutions are critically discussed. Examples of recent findings are summarized, focusing on polymer solutions, environmental parameters, combination with other techniques, near-interface measurements, simulations, and modeling. Finally, desirable new developments are discussed.  相似文献   

15.
Fluorescence correlation spectroscopy (FCS) measurements are widely used for determination of diffusion coefficients of lipids and proteins in biological membranes. In recent years, several variants of FCS have been introduced. However, a comprehensive comparison of these methods on identical systems has so far been lacking. In addition, there exist no consistent values of already determined diffusion coefficients for well-known or widely used membrane systems. This study aims to contribute to a better comparability of FCS experiments on membranes by determining the absolute diffusion coefficient of the fluorescent lipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD) in giant unilamellar vesicles (GUVs) made of dioleoylphosphatidylcholine (DOPC), which can in future studies be used as a reference value. For this purpose, five FCS variants, employing different calibration methods, were compared. Potential error sources for each particular FCS method and strategies to avoid them are discussed. The obtained absolute diffusion coefficients for DiD in DOPC were in good agreement for all investigated FCS variants. An average diffusion coefficient of D = 10.0 ± 0.4 μm(2) s(-1) at 23.5 ± 1.5 °C was obtained. The independent confirmation with different methods indicates that this value can be safely used for calibration purposes. Moreover, the comparability of the methods also in the case of slow diffusion was verified by measuring diffusion coefficients of DiD in GUVs consisting of DOPC and cholesterol.  相似文献   

16.
We have investigated the association interactions between the fluorescent dyes TAMRA, Cy3B and Alexa-546 and the DNA deoxynucleoside monophosphates by means of fluorescence quenching and fluorescence correlation spectroscopy (FCS). The interactions of Cy3B and TAMRA with the nucleotides produce a decrease in the apparent diffusion coefficient of the dyes, which result in a shift toward longer times in the FCS autocorrelation decays. Our results with Cy3B demonstrate the existence of Cy3B-nucleotide interactions that do not affect the fluorescence intensity or lifetime of the dye significantly. The same is true for TAMRA in the presence of dAMP, dCMP and dTMP. In contrast, the diffusion coefficient of Alexa 546 remains practically unchanged even at high concentrations of nucleotide. These results demonstrate that interactions between this dye and the four dNMPs are not significant. The presence of the negatively charged sulfonates and the bulky chlorine atoms in the phenyl group of Alexa 546 possibly prevent strong interactions that are otherwise possible for TAMRA. The characterization of dye-DNA interactions is important in biophysical research because they play an important role in the interpretation of energy transfer experiments, and because they can potentially affect the structure and dynamics of the DNA.  相似文献   

17.
Bayer J  Rädler JO 《Electrophoresis》2006,27(20):3952-3963
Double focus fluorescence correlation spectroscopy (dfFCS) was used to determine electrophoretic mobilities of short double-stranded DNA (dsDNA)-fragments (75 base pairs (bp) -1019 bp) in microfluidic channels. The electrokinetic flow profile across a microchannel was measured with 1 microm spatial resolution and separated in electroosmotic and electrophoretic contributions. Experiments show that the free solution mobility is independent of DNA length. The diffusion constant is additionally determined by FCS and follows a length dependent rod-diffusion model. We interpret the electrophoretic mobilities using a modified Nernst Einstein relation, which additionally takes Manning condensation and counterion induced hydrodynamic retardation forces into account. In 3% w/v polyethylene oxide (PEO)-network (M(r) 3 .10(5) Dalton) the electrophoretic velocities become size-dependent with a power-law exponent be-tween 0.28 and 0.31. Mixtures of dsDNA-fragments exhibit distinguishable peaks in the dfFCS cross-correlation function. The potential of dfFCS for realtime micro-analysis in terms of speed and spatial resolution is discussed.  相似文献   

18.
Geng L  Cox JM  He Y 《The Analyst》2001,126(8):1229-1239
Dynamic two-dimensional fluorescence correlation spectroscopy (2D FCS) is presented in the general form. Dynamic 2D FCS evaluates the time correlation function between two wavelength axes when an external perturbation is applied to the sample. It displays the vibronic features with similar time response functions in the synchronous correlation spectrum and the features with different time responses in the asynchronous correlation spectrum. The correlation analysis allows detailed assignments of the vibronic spectra of multicomponent samples. The emission-emission 2D FCS has proven to be able to resolve spectra with substantial overlaps, of species in equilibrium with each other, and of reacting species whose kinetic constants are linked and multiexponential. Similarly, the correlation analysis between excitation wavelengths allows the assignment of the excitation bands to fluorescent components. When a sinusoidal light source is used to excite the sample, the excitation-emission correlation requires the collection of only four spectra, two in-phase and two quadrature. The two-dimensional excitation-emission correlation analysis uncovers the association between the excitation and the emission vibronic features, enabling the complete assignment of the component spectra. The band associations and spectral assignments are facilitated by the two-dimensional phase map that is constructed from the synchronous and asynchronous correlation spectra. Spectral resolution can be optimized by varying the frequency of excitation and is not influenced by the detector phase angle used to collect the spectra. The resolution power of the 2D FCS is demonstrated with the retrieval of the anthracene emission spectrum from a pyrene-anthracene mixture when it contributes only 4% to the total fluorescence intensity.  相似文献   

19.
Fluorescence correlation spectroscopy (FCS) is a powerful tool to measure useful physical quantities such as concentrations, diffusion coefficients, diffusion modes or binding parameters, both in model and cell membranes. However, it can suffer from severe artifacts, especially in non-ideal systems. Here we assess the potential and limitations of standard confocal FCS on lipid membranes and present recent developments which facilitate accurate and quantitative measurements on such systems. In particular, we discuss calibration-free diffusion and concentration measurements using z-scan FCS and two focus FCS and present several approaches using scanning FCS to accurately measure slow dynamics. We also show how surface confined FCS enables the study of membrane dynamics even in presence of a strong cytosolic background and how FCS with a variable detection area can reveal submicroscopic heterogeneities in cell membranes.  相似文献   

20.
GFP mutants are known to display fluorescence flickering, a process that occurs in a wide time range. Because serine 65, threonine 203, glutamate 222, and histidine 148 have been indicated as key residues in determining the GFP fluorescence photodynamics, we have focused here on the role of histidine 148 and glutamate 222 by studying the fluorescence dynamics of GFPmut2 (S65A, V68L, and S72A GFP) and its H148G (Mut2G) and E222Q (Mut2Q) mutants. Two relaxation components are found in the fluorescence autocorrelation functions of GFPmut2: a 10-100 micros pH-dependent component and a 100-500 micros laser-power-dependent component. The comparison of these three mutants shows that the mutation of histidine 148 to glycine induces a 3-fold increase in the protonation rate, thereby indicating that the protonation-deprotonation of the chromophore occurs via a proton exchange with the solution mediated by the histidine 148 residue. The power-dependent but pH-independent relaxation mode, which is not affected by the E222Q and H148G mutations, is due to an excited-state process that is probably related to conformational rearrangements of the chromophore after the photoexcitation, more than to the chromophore excited-state proton transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号