首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ce3+ and Tb3+ co-doped BaAl2B2O7 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The photoluminescent properties of Ce3+ and Tb3+ co-doped BaAl2B2O7 phosphors were investigated by using the photoluminescence emission and excitation spectra. Under the excitation of near ultraviolet (n-UV) light, BaAl2B2O7:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the f–d transition of Ce3+ ions and green emission bands corresponding to the f–f transition of Tb3+ ions, respectively. Effective energy transfer occurred from Ce3+ to Tb3+ in BaAl2B2O7 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 71%. Furthermore, the concentration quenching and critical distance of BaAl2B2O7:Ce3+,Tb3+ phosphors were also discussed. The energy transfer from Ce3+ to Tb3+ in BaAl2B2O7 host was demonstrated to be resonant type via a dipole–dipole interaction mechanism with the energy transfer critical distance of 16.13 Å.  相似文献   

2.
Oxynitride phosphor powders comprising of CaSi2O2N2 doped with Tb3+ were successfully synthesized using a high-temperature solid-state reaction method. The experimentally determined photoluminescence (PL) properties of the produced phosphors meet the requirements of 2D/3D plasma display panels (PDPs). In particular, under the excitation of vacuum ultraviolet (VUV) synchrotron radiation and ultraviolet (UV) irradiation, emission peaks corresponding to the 5D37FJ (J=6, 5, 4, 3) and 5D47FJ (J=6, 5, 4, 3) transitions of Tb3+ ions were recorded. Monitoring the 5D47F5 emission of Tb3+ at 545 nm, the excitation bands were assigned to the host-related absorption as well as the 4f–5d (fd) and the 4f–4f (ff) transitions of Tb3+. The produced phosphors can be efficiently excited at 147 nm, and have an adequately short decay time (τ1/10=1.14 ms).  相似文献   

3.
This paper reports the emission analysis of green-emitting Tb3+-doped MgAl2O4 phosphors. Uniformity of the phase of the Tb3+-doped MgAl2O4 phosphor has been checked by X-ray diffraction (XRD) technique and show common bands existing in the results of Fourier transform infrared (FT-IR). This phosphor exhibits weak blue, orange emissions and a strong emission at λexci=350 nm. The blue and green-orange emissions are ascribed to 5D37FJ and 5D47FJ (where J=3-6) transitions of Tb3+ ions, respectively. These phosphors have shown a strong, more prominent green emission from 5D47F5 at 543 nm. The results have indicated that MgAl2O4:Tb3+ could be a potential candidate as agreen-emitting powder phosphor.  相似文献   

4.
The alkaline phosphate based LiNa3P2O7:Tb3+ phosphors are prepared by solid state reaction method. X-ray diffraction (XRD) analysis shows that all the powders possess orthorhombic structure. Fourier transform infrared (FTIR) spectroscopy studies suggest that the phosphor belong to the diphosphate family. The morphology of the phosphors is identified by scanning electron microscopy (SEM). Upon 378 nm excitation, the LiNa3P2O7:Tb3+ phosphors shown emission bands at 482, 545, 588 and 620 nm corresponding to the transitions 5D47F6, 5D47F5, 5D47F4 and 5D47F3, respectively. The optimized concentration of Tb3+ in LiNa3P2O7 phosphor is found to be 9 mol%. The concentration quenching mechanism was proved to be the exchange interaction between two nearest Tb3+ ions with the critical distance (Rc) of 1.18 nm. The Commission International de l'Eclairage (CIE) coordinates evidence that the phosphors emit in the green light region. Thermoluminescence properties of the prepared phosphors are studied by pre-irradiating the powders with different doses of UV irradiation. The kinetic parameters of TL glow curves are calculated using Chen's peak shape method.  相似文献   

5.
In this paper, we present the synthesis and luminescence properties of Tb3+ and Dy3+-doped lithium lutetium yttrium borate (Li6LuY(BO3)3) phosphors. We have adopted the well-known solid state reaction method for the synthesis of these phosphors. The emission intensities of the synthesized phosphors were found to reach their maximum, when doped by 1 mol% of Tb3+ and 3 mol% of Dy3+, beyond which emission intensities decrease due to concentration quenching. The homogeneous phase, crystalline structure and uniform morphology of the synthesized phosphors were confirmed by X-ray diffraction analysis (XRD) and Scanning electron microscopy (SEM). The X-ray and UV–VIS-induced luminescence, decay time and CIE chromaticity were investigated for the synthesized phosphors.The X-ray induced integrated light yield was measured to be 82% for Li6LuY(BO3)3:Tb3+ (LLYBO) and 59% for Li6LuY(BO3)3:Dy3+ of that of commercially available X-ray imaging material; Gd2O2S:Tb3+ (Gadox).LLYBO:Tb3+ phosphor displayed five major emission bands that correspond to 5Dj7Fj transitions. The 1931 Commission Internationale de l'Eclairage (CIE) chromaticity coordinates were also measured.  相似文献   

6.
Al2O3:Tb3+ green phosphors were synthesized via a microwave solvothermal and thermal decomposition route, and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra, and decay curves. XRD results indicate that Tb3+ doped samples are γ-Al2O3 after being calcined at 773 K. SEM results show that the particles of Al2O3:Tb3+ are hierarchically nanostructured microspheres assembled from nanosheets. The PL spectra indicate that the 5D47F5 (545 nm) electric dipole transition is the most intensive when excited at 235 nm. It is shown that 0.7 mol% of doping concentration of Tb3+ ions in γ-Al2O3:Tb3+ is optimum. According to Dexter's theory, the critical distance between Tb3+ ions for energy transfer was determined to be 18.4 Å. It is found that the curve followed the single-exponential decay. The excellent chromaticity coordinates of Al2O3:Tb3+ phosphors, as defined by the International Commission on Illumination (CIE), indicate that it is a good candidate for use in light display systems and optoelectronic devices.  相似文献   

7.
Highly uniform and monodisperse KY3F10:Ln3+ (Ln=Eu, Ce, Tb) nanospheres, with an average diameter of 300 nm, have been successfully prepared through a simple template-free and surfactant-free stirring method under ambient conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The SEM images illustrate that these spheres were actually composed of randomly aggregated nanoparticles. The doped rare earth ions show their characteristic emission in the KY3F10 samples, i.e., Eu3+ 5D07FJ (J=1, 2, 3, 4), Tb3+ 5D47FJ (J=6, 5, 4, 3, 2) and Ce3+ 5d–4f transition emissions, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in KY3F10 nanospheres, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.  相似文献   

8.
A new green phosphor Ca12Al14O32Cl2: Tb3+ derived from Tb-doped Ca-Al layered double hydroxide (Tb-doped CaAl-LDH) was prepared through phase transition route. The X-ray diffraction measurement results revealed that the Tb-doped CaAl-LDH transformed into Ca12Al14O32Cl2:Tb3+ phase at 600 °C. With temperature varying from 600, 800–1000 °C, the crystallinity of the Ca12Al14O32Cl2:Tb3+ phase gradually improved. Compositional analyses suggested the chemical formula of the Ca12Al14O32Cl2:Tb3+ phase estimated to be Ca12Al13.52Tb0.48O32Cl2. The Ca12Al13.52Tb0.48O32Cl2 phase can be efficiently excited by near ultraviolet light and show strong green emissions attributed to 5D47FJ (J = 5, 6) transition of Tb3+. The present Ca12Al13.52Tb0.48O32Cl2 may be a promising candidate for green phosphor applied in LED.  相似文献   

9.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

10.
The emission spectra of single and polyterbium centers have been measured at the excitation of CaSO4:Tb3+ phosphors with different charge compensators (Na+, calcium vacancies, etc.) by 3.8–35 eV photons or 5 and 300 keV electrons at 6–300 K. The possible mechanisms providing quantum yield above unity for green (5D4 → 7FJ) and blue emission (5D3 → 7FJ) of Tb3+ at the direct intracenter excitation, excitation of oxyanions or creation of hot (nonrelaxed) electrons and holes have been discussed. On the basis of thermally stimulated luminescence at 6–600 K, the peculiarities of the hopping diffusion of relaxed electrons and holes and their tentative low-temperature self-trapping have been considered.  相似文献   

11.
Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.  相似文献   

12.
Undoped and Eu3+ doped BaTa2O6 phosphors were synthesized via solid state reaction method and characterized by using XRD, SEM-EDS and photoluminescence (PL) analyses. The XRD results revealed that the crystal structure of BaTa2O6 allowed up to 10 mol% levels of Eu3+ ions due to the TTB characteristic network of adjacent octahedrals. SEM-EDS analyses confirmed the formation of BaTa2O6 structure and EuTaO4 secondary phase. BaTa2O6:Eu3+ phosphors exhibited orange and red emissions at 592.2 nm and 615.7 nm in the visible region respectively. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of the BaTa2O6:Eu3+ phosphors that excited at λ ex = 400 nm ranged from orangish-red to pinkish-red depending on increasing Eu3+ concentration.  相似文献   

13.
Through altering the solvents, we have obtained the Eu3+/Tb3+ ions-doped LnPO4 (Ln = La, Gd) phosphors with different particle sizes, microstructures and morphologies via a facile solvo-thermal technology. X-ray powder diffraction (XRD), transmission electron microscope (TEM), and scanning electron microscope (SEM) have shown that the products using different solvents have various structures and morphologies. With the increase of DMA/water volume ratio, the microstructure has changed from hexagonal phase to monoclinic one, and the morphology from nanorod to nanoparticle, revealing the decreased oriented growth. The presence of DMA is an important factor in guiding the anisotropic growth of hexagonal lanthanide phosphates. Besides, N-methyl-2-pyrrolidone has been used as solvent to induce the Eu3+/Tb3+ ions-doped LnPO4 (Ln = La, Gd) phosphors with different morphologies and structures. Finally, the photoluminescence behaviors of these nanocrystals have been investigated, which are dependent on their microstructures and morphologies.  相似文献   

14.
Terbium-doped lanthanum oxide (La2O3:Tb3+) nanofibers were prepared by electrospinning followed by calcination at high temperature. Thermogravimetric analyzer (TGA), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) were used to characterize the obtained fibers. The results reveal that the nanofibers have an average diameter of ca. 95±25 nm and are composed of pure La2O3 phase. Under the excitation of 274 nm light, the La2O3:Tb3+ nanofibers exhibit the characteristic emission resulting from the 5D47FJ (J=3, 4, 5, 6) transitions of Tb3+ ions. And the PL emission intensity is stronger than that of their nanoparticle counterparts.  相似文献   

15.
LiCaBO3:M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors were synthesized by a normal solid-state reaction using CaCO3, H3BO3, Li2CO3, Na2CO3, K2CO3, Eu2O3, Sm2O3, Tb4O7, CeO2 and Dy2O3 as starting materials. The emission and excitation spectra were measured by a SHIMADZU RF-540 UV spectrophotometer. And the results show that these phosphors can be excited effectively by near-ultraviolet light-emitting diodes (UVLED), and emit red, green and blue light. Consequently, these phosphors are promising phosphors for white light-emitting diodes (LEDs). Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

16.
The BaGd2?x O4:xDy3+ (0 ≤ x ≤ 0.08) phosphors were synthesized at 1,300 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction, photoluminescence excitation spectra, photoluminescence (PL) spectra, X-ray excited luminescence (XEL) spectra, and thermoluminescence (TL) spectra. It is found that the quenching concentration of Dy3+ ions in BaGd2O4 host is dependent on the selected excitation wavelength. The optimal PL intensity for the investigated BaGd2?x O4:xDy3+ phosphors is found to be x = 0.01, 0.02, and 0.04, upon excitation by 234, 277, and 350 nm ultraviolet light, respectively. The energy transfer among Dy3+ ions upon excitation by 350 nm is confirmed to be an electric dipole–dipole interaction mechanism based on the fitting of Huang’s rule. In addition, the intensive XEL from BaGd2O4:Dy3+ phosphor is observed by the naked eyes at room temperature, and TL properties of the investigated phosphors are analyzed and discussed. All the results imply that the investigated phosphors could be a promising scintillating phosphor.  相似文献   

17.
We report the optical absorption, photoluminescence and fluorescence decay properties of Tb3+-doped sodium fluoro-borate (SFB) glasses. Different concentrations of Tb3+-doped SFB glasses were prepared by conventional melt quenching technique using a chemical composition (in mol%) 25Na2O–5LaF3–10CaF2–10AlF3–(50?x) B2O3?x TbF3 (0.01≤x≥4). The Judd-Ofelt model has been adopted to determine the radiative parameters of the 5D47F6–3 emission transitions. The effect of Tb3+ ion concentration on the emission from the 5D3,4 excited levels is discussed in detail. The analysis of optimization of Tb3+ ion concentration for efficient green color display devises is reported. The resonance energy transfer mechanism responsible for non-radiative decay rates is clearly explored.  相似文献   

18.
By using metal nitrates as starting materials and citric acid as complexing agent, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ powder phosphors were prepared by a citrate-gel method. Thermal analysis (TG-DTG), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), photoluminescence excitation and emission, as well as kinetic decays were employed to characterize the resulting samples. The results of the XRD indicated the precursor samples began to crystallize at 800 °C and the crystallinity increased with elevation the annealing temperature. TEM images showed that the phosphor particles were basically of spherical shape, with good dispersion about a particle size of around 40-70 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+, and at around 543 nm corresponding to the 5D4-7F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

19.
Different concentrations of Tb3+ ion-doped gadolinium aluminum garnet (GAG) nanophosphors have been synthesized by solvothermal reaction method and sintered at 1300 °C. The XRD patterns confirm that the GAG phosphors sintered at 1300 °C have a garnet structure with single cubic phase. The calculated crystallite size is about 92 nm. The SEM images of the phosphors show the spherical morphology agglomerated with many small particles. The luminescence properties of these phosphors have been carried out by the emission and excitation spectra along with lifetime measurements. The excitation spectra of GAG:Tb3+ phosphors consist of three broad bands due to the 4f8→4f75d1 transition and some sharp peaks due to the 4f8→4f8 transition. The emission spectra of the phosphors reveal two colors, such as blue due to 5D37FJ transitions and green due to the 5D47FJ transitions. The dynamics of the phosphors have been investigated by decay curves and the cross-relaxation process and is observed at 0.5 mol% Tb3+ concentration.  相似文献   

20.
Nanocrystalline Y3Al5O12: Ce3+/Tb3+ (average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores (average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1–3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/Tb3+ particles show strong yellow-green and green emission corresponding to the 5d–4f emission of Ce3+ and 5D47F J (J = 6, 5, 4, 3) emission of Tb3+, respectively. These phosphors may have potential application in field emission displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号