首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of the motion of a cavity in a plane-parallel flow of an ideal liquid, taking account of surface tension, was first discussed in [1], in which an exact equation was obtained describing the equilibrium form of the cavity. In [2] an analysis was made of this equation, and, in a particular case, the existence of an analytical solution was demonstrated. Articles [3, 4] give the results of numerical solutions. In the present article, the cavity is defined by an infinite set of generalized coordinates, and Lagrange equations determining the dynamics of the cavity are given in explicit form. The problem discussed in [1–4] is reduced to the problem of seeking a minimum of a function of an infinite number of variables. The explicit form of this function is found. In distinction from [1–4], on the basis of the Lagrauge equations, a study is also made of the unsteady-state motion of the cavity. The dynamic equations are generalized for the case of a cavity moving in a heavy viscous liquid with surface tension at large Reynolds numbers. Under these circumstances, the steady-state motion of the cavity is determined from an infinite system of algebraic equations written in explicit form. An exact solution of the dynamic equations is obtained for an elliptical cavity in the case of an ideal liquid. An approximation of the cavity by an ellipse is used to find the approximate analytical dependence of the Weber number on the deformation, and a comparison is made with numerical calculations [3, 4]. The problem of the motion of an elliptical cavity is considered in a manner analogous to the problem of an ellipsoidal cavity for an axisymmetric flow [5, 6]. In distinction from [6], the equilibrium form of a flat cavity in a heavy viscous liquid becomes unstable if the ratio of the axes of the cavity is greater than 2.06.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 15–23, September–October, 1973.The author thanks G. Yu. Stepanov for his useful observations.  相似文献   

2.
The problem of the stability of nonplane-parallel flows is one of the most difficult and least studied problems in the theory of hydrodynamic stability [1]. In contrast to the Heisenberg approximation [1], the basic state whose stability is investigated depends on several variables, and the stability problem reduces to the solution of an eigenvalue problem for partial differential equations in which the coefficients depend on several variables [2–7]. In the case of a periodic dependence of these coefficients on the time [2] or the spatial coordinates [3, 4], the analog of Floquet theory for the partial differential equations is constructed. With rare exceptions, the case of a nonperiodic dependence has usually been considered under the assumption of weak nonplane-parallelism, i.e., a fairly small deviation from the plane-parallel case has been assumed and the corresponding asymptotic expansions in the linear [6] and nonlinear [7] stability analyses considered. The present paper considers the case of an arbitrary dependence of the velocity profile of the basic flow on two spatial variables. The deviation from the plane-parallel case is not assumed to be small, and the corresponding eigenvalue problem for the partial differential equations is solved by means of the direct methods of [5], which were introduced for the first time and justified in the theory of hydrodynamic stability by Petrov [8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 21–28, May–June, 1987.  相似文献   

3.
In previous papers, e.g., [1, 2], boundary-layer separation was investigated by analyzing solutions of the boundary-layer equations with a given external pressure distribution. In general, this kind of solution cannot be continued after the separation point. Study of the asymptotic behavior of solutions of the Navier-Stokes equations [3–5] shows that, in boundarylayer separation in supersonic flow over a smooth surface, the main effect on the flow in the immediate vicinity of the separation point is a large local pressure gradient induced by interaction with the external flow. The solution can be continued beyond the separation point and linked to the solutions in the other regions, located downstream [5]. Similar results for incompressible flow were recently obtained in [6]. We can assume that in general there is always a small region near the separation point in which separation is self-induced, and where the limiting solution of the Navier-Stokes equations does not contain unattainable singular points. However, this limiting slope picture can be more complex and can contain more regions where the behavior of the functions differed from that found in [3–6]. The present paper investigates separation on a body moving at hypersonic speed, where the ratio of the stagnation temperature to the body temperature is large. It is shown that both. for hypersonic and supersonic speeds the flow near the separation point is appreciably affected by the distribution of parameters over the entire unperturbed boundary layer, and not only in a narrow layer near the body, as was true in the flows studied earlier [3–6]. Regions may appear with appreciable transverse pressure drops within the zone occupied by layers of the unperturbed boundary layer. Similarity parameters are given, the boundary problems are formulated, and the results of computer calculation are presented. The concept of subcritical and supercritical boundary layers is refined, and the dependence of pressure coefficients responsible for separation on the temperature factor is established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 99–109, November–December 1973.  相似文献   

4.
Nonisothermal Couette flow has been studied in a number of papers [1–11] for various laws of the temperature dependence of viscosity. In [1] the viscosity of the medium was assumed constant; in [2–5] a hyperbolic law of variation of viscosity with temperature was used; in [6–8] the Reynolds relation was assumed; in [9] the investigation was performed for an arbitrary temperature dependence of viscosity. Flows of media with an exponential temperature dependence of viscosity are characterized by large temperature gradients in the flow. This permits the treatment of the temperature variation in the flow of the fluid as a hydrodynamic thermal explosion [8, 10, 11]. The conditions of the formulation of the problem of the articles mentioned were limited by the possibility of obtaining an analytic solution. In the present article we consider nonisothermal Couette flows of a non-Newtonian fluid under the action of a pressure gradient along the plates. The equations for this case do not have an analytic solution. Methods developed in [12–14] for the qualitative study of differential equations in three-dimensional phase spaces were used in the analysis. The calculations were performed by computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 26–30, May–June, 1981.  相似文献   

5.
The flow in turbomachines is currently calculated either on the basis of a single successive solution of an axisymmetric problem (see, for example, [1-A]) and the problem of flow past cascades of blades in a layer of variable thickness [1, 5], or by solution of a quasi-three-dimensional problem [6–8], or on the basis of three-dimensional models of the motion [9–11]. In this paper, we derive equations of a three-dimensional model of the flow of an ideal incompressible fluid for an arbitrary curvilinear system of coordinates based on averaging the equations of motion in the Gromek–Lamb form in the azimuthal direction; the pulsation terms are taken into account in the equations of the quasi-three-dimensional motion. An algorithm for numerical solution of the problem is described. The results of calculations are given and compared with experimental data for flows in the blade passages of an axial pump and a rotating-blade turbine. The obtained results are analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 69–76, March–April, 1991.I thank A. I. Kuzin and A. V. Gol'din for supplying the results of the experimental investigations.  相似文献   

6.
The motions of Newtonian and non-Newtonian media with consideration of the heat of friction and temperature dependence of the rheological characteristics of the medium have been examined by many authors [1–6]. A detailed bibliography of these works is given in [3, 5], In the dissertation of one of the authors* an attempt was made to investigate heat transfer during movement of a nonlinear viscoplastic medium with consideration of the temperature dependence of plastic viscosity at a constant value of the ultimate shear stress to. The last assumption is not always justified, since more often cases are found when not only plastic viscosity but also the ultimate shear stress changes with change in temperature. In this article we will examine the effect of the heat of internal friction with consideration of the temperature dependence of plastic viscosity and ultimate shear stress on the hydraulic characteristics of a laminar regime of motion in a plane channel of nonlinear viscoplastic media whose rheological behavior is described by the generalized Casson equation [5]. The upper and lower estimates are found for nonlinear differential equations describing the indicated processes.R. M. Sattarov, Certain isothermal and nonisothermal motions of viscoplastic media, Candidate's Dissertation, Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk (1973).Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 162–166, March–April, 1977.In conclusion the authors thank V. I. Anikin for help in the calculations.  相似文献   

7.
The dependence of the gas-kinetic coefficients on the accuracy of calculating the thermal and viscous Chapman functions for the case of a simple gas in the neighborhood of a plane rigid surface is studied. Expressions for the gas-kinetic coefficients are obtained by solving the Boltzmann equation using the Loyalka method. In order to find the temperature jump we use boundary conditions which take into account the accommodation both on the energy and the momentum. The effect of the accuracy of solving the integral equations for the thermal and viscous functions on the value of the temperature jump and the thermal and isothermal slip coefficients was studied by taking into account one, two or three terms in expansions of these functions in Sonine polynomials. The dependence of the results on the choice of the molecule interaction potential model is analyzed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 190–198, March–April, 1995.  相似文献   

8.
The paper studies the interaction of a harmonically oscillating spherical body and a thin elastic cylindrical shell filled with a perfect compressible fluid and immersed in an infinite elastic medium. The geometrical center of the sphere is located on the cylinder axis. The acoustic approximation, the theory of thin elastic shells based on the Kirchhoff—Love hypotheses, and the Lamé equations are used to model the motion of the fluid, shell, and medium, respectively. The solution method is based on the possibility of representing partial solutions of the Helmholtz equations written in cylindrical coordinates in terms of partial solutions written in spherical coordinates, and vice versa. Satisfying the boundary conditions at the shell—medium and shell—fluid interfaces and at the spherical surface produces an infinite system of algebraic equations with coefficients in the form of improper integrals of cylindrical functions. This system is solved by the reduction method. The behavior of the hydroelastic system is analyzed against the frequency of forced oscillations.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 75–86, September 2004.  相似文献   

9.
Corrugated plates are widely used in modern constructions and structures, because they, in contrast to plane plates, possess greater rigidity. In many cases, such a plate can be modeled by a homogeneous anisotropic plate with certain effective flexural and tensional rigidities. Depending on the geometry of corrugations and their location, the equivalent homogeneous plate can also have rigidities of mutual influence. These rigidities allow one to take into account the influence of bending moments on the strain in the midplane and, conversely, the influence of longitudinal strains on the plate bending [1]. The behavior of the corrugated plate under the action of a load normal to the midsurface is described by equations of the theory of flexible plates with initial deflection. These equations form a coupled system of nonlinear partial differential equations with variable coefficients [2]. The dependence of the coefficients on the coordinates is determined by the corrugation geometry. In the case of a plate with periodic corrugation, the coefficients significantly vary within one typical element and depend on the values of local variables determined in each of the typical elements. There is a connection between the local and global variables, and therefore, the functions of local coordinates are simultaneously functions of global coordinates, which are sometimes called rapidly oscillating functions [3].One of the methods for solving the equations with rapidly oscillating coefficients is the asymptotic method of small geometric parameter. The standard procedure of this method usually includes preparatory stages. At the first stage, as a rule, a rectangular periodicity cell is distinguished to be a typical element. At the second stage, the scale of global coordinates is changed so that the rectangular structure periodicity cells became square cells of size l × l. The third stage consists in passing to the dimensionless global coordinates relative to the plate characteristic dimension L. As a result, the dependence between the new local variables and the new scaled dimensionless variables is such that the factor 1/α, where α=l/L ? 1 is a small geometric parameter, appears in differentiating any function of the local coordinate with respect to the global coordinate. After this, the solution of the problem in new coordinates is sought as an asymptotic expansion in the small geometric parameter [1], [4–10].We note that, in the small geometric parameter method, the asymptotic series simultaneously have the form of expansions in the gradients of functions depending only on the global coordinates. This averaging procedure can be applied to linear and nonlinear boundary value problems for differential equations with variable periodic coefficients for which the periodicity cell can be affinely transformed into the periodicity cube. In the case of an arbitrary dependence of the coefficients on the coordinates (including periodic dependence), another averaging technique can be used in linear problems. This technique is based on the possibility of the integral representation of the solution of the original problem for the linear equation with variables coefficients in terms of the solution of the same problem for an equation of the same type but with constant coefficients [11–13]. The integral representation implies that the solution of the original problem can be represented in the form of the series in the gradients of the solution of the problem for the equation with constant coefficients [13].The aim of the present paper is to develop methods for calculating effective characteristics of corrugated plates. To this end, we first write out the equilibrium equations for a flexible anisotropic plate, which is inhomogeneous in the thickness direction and in the horizontal projection, with an initial deflection. We write these equations in matrix form, which allows one to significantly reduce the length of the expressions and to simplify further calculations. After this, we average the initial matrix equations with variable coefficients. The averaging procedure implies the statement of problems such that, after solving them, we can calculate the desired effective characteristics. By way of example, we consider the case of a corrugated plate made of a homogeneous isotropic material whose corrugations are hexagonal in the horizontal projection. In this case, we obtain approximate expressions for the components of the effective tensors of flexural rigidity and longitudinal compliance and expressions for the effective plate thickness.  相似文献   

10.
In [1, 2], a dynamical method is proposed for solving stationary inverse problems of potential theory, including the inverse problem of gravitational prospecting. It is based on analogy with the problem of establishing the interface of two immiscible fluids flowing in a porous medium. In the present paper, a system of two functional equations is derived from which one can obtain, as special cases, an equation corresponding to the method of [1, 2], and also a system of equations that enables one to propose a new and different method for solving the inverse problem of gravitational prospecting. Equations are derived in polar coordinates for plane Cauchy problems corresponding to both methods, and the results are also given of the solution of some model problems by these methods. Finally, ways of generating new methods of solution of the inverse problem of gravitational prospecting are considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 63–71, July–August, 1980.  相似文献   

11.
Using the boundary-layer equations as a basis, the author considers the propagation of plane jets of conducting fluid in a transverse magnetic field (noninductive approximation).The propagation of plane jets of conducting fluid is considered in several studies [1–12]. In the first few studies jet flow in a nonuniform magnetic field is considered; here the field strength distribution along the jet axis was chosen in order to obtain self-similar solutions. The solution to such a problem given a constant conductivity of the medium is given in [1–3] for a free jet and in [4] for a semibounded jet; reference [5] contains a solution to the problem of a free jet allowing for the dependence of conductivity on temperature. References [6–8] attempt an exact solution to the problem of jet propagation in any magnetic field. An approximate solution to problems of this type can be obtained by using the integral method. References [9–10] contain the solution obtained by this method for a free jet propagating in a uniform magnetic field.The last study [10] also gives a comparison of the exact solution obtained in [3] with the solution obtained by the integral method using as an example the propagation of a jet in a nonuniform magnetic field. It is shown that for scale values of the jet velocity and thickness the integral method yields almost-exact values. In this study [10], the propagation of a free jet is considered allowing for conduction anisotropy. The solution to the problem of a free jet within the asymptotic boundary layer is obtained in [1] by applying the expansion method to the small magnetic-interaction parameter. With this method, the problem of a turbulent jet is considered in terms of the Prandtl scheme. The Boussinesq formula for the turbulent-viscosity coefficient is used in [12].This study considers the dynamic and thermal problems involved with a laminar free and semibounded jet within the asymptotic boundary layer, propagating in a magnetic field with any distribution. A system of ordinary differential equations and the integral condition are obtained from the initial partial differential equations. The solution of the derived equations is illustrated by the example of jet propagation in a uniform magnetic field. A similar solution is obtained for a turbulent free jet with the turbulent-exchange coefficient defined by the Prandtl scheme.  相似文献   

12.
A short-term microdamage theory for porous transversely isotropic piezoelectric materials is set forth. Microdamages are modeled by pores. The fracture criterion for a microvolume of a transversely isotropic medium is assumed to have the Huber–Mises form. The ultimate strength is a random function of coordinates with an exponential or Weibull distribution. The stress–strain distribution and effective properties of the material are determined from the stochastic electroelastic equations. The deformation and microdamage equations are closed by the porosity balance equations. For various values of electric intensity, the microdamage–macrodeformation relationships and deformation curves are plotted. The effect of electric intensity on the microdamage of piezoelectric materials is studied  相似文献   

13.
The theoretical study of nonisothermal flows of magnetizable liquids presents serious matheical difficulties, which are intensified as compared to to the study of normal liquids by the necessity of simultaneous solution of both the hydrodynamics and Maxwell's equations, with corresponding boundary conditions for the magnetic field. Thus, in most cases problems of this type are solved by neglecting the effect of the liquid's nonisothermal state on the field distribution within the liquid, and also, as a rule, with use of an approximate solution for Maxwell's equations and fulfillment of the boundary conditions for the field [1–3]. The present study will present easily realizable practical formulations of the problem which permit exact one-dimensional solutions of the complete system of the equations of thermomechanic s of electrically nonconductive incompressible Newtonian magnetizable liquids with constant transfer coefficients. A common feature of the formulations is the presence of a longitudinal temperature gradient along the boundaries along which liquid motion is accomplished. Plane-parallel convective flows of this type in a conventional liquid and their stability were considered in [4–6].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 126–133, May–June, 1979.  相似文献   

14.
Theoretical study of a three-dimensional laminar boundary layer is a complex problem, but it can be substantially simplified in certain particular cases and even reduced to the solution of ordinary differential equations.One such particular case is the flow of a compressible gas on a streamline in conical external flow. The case is of considerable practical importance because the local heat fluxes may take extremal values on such lines.Such flow, except for the conical case, has been examined [1–4], and an approximate method has been given [1] on the basis of integral relationships and a special form for the approximating functions. A numerical solution has been given [2, 3] for such flow around an infinite cylinder. It was assumed in [1–3] that the Prandtl number and the specific heats were constant, and that the dynamic viscosity was proportional to temperature. Heat transfer has been examined [4] near a cylinder exposed to a flow of dissociated air.Here we give results from numerical solution of a system of ordinary differential equations for the flow of a compressible gas in a laminar boundary layer on streamlines in conical external flow, with or without influx or withdrawal of a homogeneous gas. It is assumed that the gas is perfect and that the dynamic viscosity has a power-law temperature dependence.  相似文献   

15.
The combined influence of unsteady effects and free-stream nonuniformity on the variation of the flow structure near the stagnation line and the mechanical and thermal surface loads is investigated within the framework of the thin viscous shock layer model with reference to the example of the motion of blunt bodies at constant velocity through a plane temperature inhomogeneity. The dependence of the friction and heat transfer coefficients on the Reynolds number, the shape of the body and the parameters of the temperature inhomogeneity is analyzed. A number of properties of the flow are established on the basis of numerical solutions obtained over a broad range of variation of the governing parameters. By comparing the solutions obtained in the exact formulation with the calculations made in the quasisteady approximation the region of applicability of the latter is determined. In a number of cases of the motion of a body at supersonic speed in nonuniform media it is necessary to take into account the effect of the nonstationarity of the problem on the flow parameters. In particular, as the results of experiments [1] show, at Strouhal numbers of the order of unity the unsteady effects are important in the problem of the motion of a body through a temperature inhomogeneity. In a number of studies the nonstationary effect associated with supersonic motion in nonuniform media has already been investigated theoretically. In [2] the Euler equations were used, while in [3–5] the equations of a viscous shock layer were used; moreover, whereas in [3–4] the solution was limited to the neighborhood of the stagnation line, in [5] it was obtained for the entire forward surface of a sphere. The effect of free-stream nonuniformity on the structure of the viscous shock layer in steady flow past axisymmetric bodies was studied in [6, 7] and for certain particular cases of three-dimensional flow in [8–11].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 175–180, May–June, 1990.  相似文献   

16.
Formal asymptotic expansions of the solution of the steady-state problem of incompressible flow in an unbounded region under the influence of a given temperature gradient along the free boundary are constructed for high Marangoni numbers. In the boundary layer near the free surface the flow satisfies a system of nonlinear equations for which in the neighborhood of the critical point self-similar solutions are found. Outside the boundary layer the slow flow approximately satisfies the equations of an inviscid fluid. A free surface equation, which when the temperature gradient vanishes determines the equilibrium free surface of the capillary fluid, is obtained. The surface of a gas bubble contiguous with a rigid wall and the shape of the capillary meniscus in the presence of nonuniform heating of the free boundary are calculated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 61–67, May–June, 1989.  相似文献   

17.
Geometrically non-linear deformation of axially extensional Timoshenko beams subjected mechanical as well thermal loadings were characterized by a system of 7 coupled and highly non-linear ordinary differential equations, which results in a complicated two-point boundary-value problem. By using shooting method this kind of problem can be numerically solved efficiently. Based on the above-mentioned mathematical formulation and numerical procedure, analysis of large thermal deflections for Timoshenko beams, subjected transversely non-uniform temperature rise and with immovably pinned–pinned as well as fixed–fixed ends, is presented. Characteristic curves showing the relationships between the beam deformation and temperature rise are illustrated. Especially, the effects of shear deformation on the bending and buckling response are quantitatively investigated. The numerical results show, as we know, that shear deformation effects become significant with the decrease of the slenderness and with the increase of the shear flexibility.  相似文献   

18.
A study is made of two-dimensional problems of thermal convection of a viscous incompressible gas in rectangular regions that have gas inlet and outlet channels in the presence of a temperature difference between the bottom and the top (the bottom is heated). In contrast to the well-studied case of natural convection, when no-slip conditions are specified on all boundaries of the region and motion in the region occurs only through the temperature difference [1–4], the heat transfer in the investigated flows is complicated by the additional influence of the forced convection of the gas due to the motion of gas through the inlet and outlet channels. Flows of such type simulate well the processes that take place in many heat transfer devices and in ventilated and air-conditioned industrial premises. Two formulations of the problem are considered. In the first, the gas flow through the inlet and outlet channels is assumed given, and the solution of the problem is determined by the dimensionless Prandtl, Grashof, and Reynolds numbers. In the second case, this flow rate is not given but determined during the solution of the problem. The motion in the region arises from the difference between the temperatures of the bottom and the top of the region, and the motion, in its turn, causes a flow of gas through the inlet and outlet channels. As in the case of natural convection, the solution of the problem in this case is determined by only two dimensionless numbers — the Grashof and Prandtl numbers. By numerical solution of the boundary-value problems for the equations of heat transfer a study is made of the influence of the characteristic dimensionless numbers on the hydrodynamic and temperature fields and the heat fluxes through the boundaries of the region. The solutions of the problems in the two formulations are compared for different positions of the outlet channels.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 126–131, September–October, 1979.We thank G. I. Petrov for discussing the results.  相似文献   

19.
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered in state space and in direct second order (structural) form. In state space order reduction methods, the equations of motion are expressed as a set of first order equations and transformed using the Lyapunov–Floquet (L–F) transformation such that the linear parts of new set of equations are time invariant. At this stage, four order reduction methodologies, namely linear, nonlinear projection via singular perturbation, post-processing approach and invariant manifold technique, are suggested. The invariant manifold technique yields a unique ‘reducibility condition’ that provides the conditions under which an accurate nonlinear order reduction is possible. Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be small. An alternate approach of deriving reduced order models in direct second order form is also presented. Here the system is converted into an equivalent second order nonlinear system with time invariant linear system matrices and periodically modulated nonlinearities via the L–F and other canonical transformations. Then a master-slave separation of degrees of freedom is used and a nonlinear relation between the slave coordinates and the master coordinates is constructed. This method yields the same ‘reducibility conditions’ obtained by invariant manifold approach in state space. Some examples are given to show potential applications to real problems using above mentioned methodologies. Order reduction possibilities and results for various cases including ‘parametric’, ‘internal’, ‘true internal’ and ‘true combination resonances’ are discussed. A generalization of these ideas to periodic-quasiperiodic systems is included and demonstrated by means of an example.  相似文献   

20.
An approximate dependence for calculating the density field in a jet of viscous gas flowing from a conical nozzle into a vacuum is proposed on the basis of an experimental investigation and an analysis of the results of a numerical solution of the complete system of Navier-Stokes equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号