首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new Li2O–Nb2O5–TiO2 (LNT) ceramic with the Li2O:Nb2O5:TiO2 mole ratio of 5.5:1:7 was prepared by solid state reaction route. The phase and structure of the ceramic were characterized by X-ray diffraction and scanning electron microscopy (SEM). The microwave dielectric properties of the ceramics were studied using a network analyzer. The microwave dielectric ceramic has low sintering temperature (∼1075°C) and good microwave dielectric properties of ε r=42, Q×f=16900 GHz (5.75 GHz), and τ f =63.7 ppm/°C. The addition of B2O3 can effectively lower the sintering temperature from 1075 to 875°C and does not induce degradation of the microwave dielectric properties. Obviously, the LNT ceramics can be applied to microwave low temperature-cofired ceramics (LTCC) devices.  相似文献   

2.
D. E. Feldman 《JETP Letters》1999,70(2):135-140
The random field and random anisotropy N-vector models are studied with the functional renormalization group in 4−ε dimensions. The random anisotropy Heisenberg (N=3) model has a phase with an infinite correlation length at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law 〈m(r 1)m(r 2)〉∼|r 1r 2|− 0.62ε. The magnetic susceptibility diverges at low fields as χ∼H −1+0.15ε. In the random field N-vector model the correlation length is finite at arbitrarily weak disorder for any N>3. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 2, 130–135 (25 July 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

3.
The relative differences δ ns (n=1, 2, 3) of the spindependent conversion coefficients were measured for α-Fe and α=Fe2O3. In contrast to theoretical predictions of δ1s≃−10−5 we found δ1s≃−1.0(4)x10−2 for both α-Fe and α-Fe2O3. As a possible source for this difference we consider a dynamic coupling with the atomic spin during the conversion process.  相似文献   

4.
Summary Magnetic properties of Fe nitrides have been re-examined by57Fe M?ssbauer spectroscopy. Hyperfine magnetic fields for α″-Fe16N2 are 30, 31 and 39T at 298K, but the averaged hyperfine field is 33T and nearly equal to the value of pure α-Fe. σ-Fe2 N is an antiferromagnet below 9K having a small magnetic moment less than 0.1 μB, although γ′-Fe4N and ε-Fe3–2N are ferromagnets. ZnS-type FeN is non-magnetic at 4.2K. M?ssbauer spectra obtained from NaCl-type FeN are complex and some Fe atoms in this nitride show a surprisingly large hyperfine magnetic field of 49T. Paper presented at the ICAME-95, Rimini, 10–16 September 1995.  相似文献   

5.
(K0.5Na0.5)(Nb1-xTax)O3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique. The results of X-ray diffraction reveal that Ta5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with an orthorhombic perovskite structure. Because of the high melting temperature of KTaO3, the (K0.5Na0.5)(Nb1-xTax)O3 ceramics can be sintered at higher temperatures. The partial substitution of Ta5+ for the B-site ion Nb5+ decreases both paraelectric/cubic–ferroelectric/tetragonal and ferroelectric/tetragonal–ferroelectric/orthorhombic phase transition temperatures, TC and TO-T. It also induces a relaxor phase transition and weakens the ferroelectricity of the ceramics. The ceramics become ‘softened’, leading to improvements in d33, kp, kt and εr and a decease in Ec, Qm and Np. The ceramics with x=0.075–0.15 become optimum, having d33=127–151 pC/N, kp=0.43–0.44, kt=0.43–0.44, εr=541–712, tanδ=1.75–2.48% and TC=378–329 °C. PACS 77.65.-j; 77.84.Dy; 77.84.-s  相似文献   

6.
Electron beam irradiation studies on liquid crystal material 5CB have been carried out at a temperature where the compound exists in the isotropic liquid phase. In situ time-resolved spectroscopic characterization was carried out during the irradiation. Three different transients were observed during the 2-μs electron pulse. After about 50 μs, only one transient species was found to be present, which has an absorption peak at 360 nm. Radiolysed sample exhibits a broad absorption at ∼400 nm. The dielectric measurements show that even a low level of irradiation results in a dramatic increase in the component of dielectric permittivity normal to the long axes of the molecules ε, and a corresponding decrease in the dielectric anisotropy (Δε′=ε−ε ). These studies show that 5CB is prone to substantial radiation damage on exposure to the beam of high-energy electrons.  相似文献   

7.
Results are reported for measurements of the spin-lattice relaxation times of E1 centers in quartz glass, produced by neutron irradiation, with the measurements made at two frequencies 9.25 and 24.0 GHz over a wide temperature interval 1.5–300 K. The experimental data are interpreted on the basis of interaction mechanisms of the spins with two-level systems with excitation energies ∼6, ∼26, and ∼420 cm−1. A small modification of the existing theory allows us to explain a number of features of the observed temperature and frequency dependence of the relaxation rate. The results are compared with the data available in the literature on spin-lattice relaxation of irradiation centers in crystalline quartz and quartz glass. Fiz. Tverd. Tela (St. Petersburg) 39, 1335–1337 (August 1997)  相似文献   

8.
Using conversion electron Mossbauer spectroscopy(CEMS) and slow positron beam, the chemical states of the implanted 57Fe (100KeV,3 × 10 16 ions/cm 2) in ZrO2 containing 3 mol% Y 2O 3( ZY 3) and its thermodynamic behavior during annealing process with the temperature from 200 to 500°C were studied. After annealing at 400°C the complex of Fe3+-V has been mostly dissolved, and the prior phase to α-Fe and α-Fe nano-crystalline cluster were present in the sample. Meanwhile the mixed conducting of oxygen-ions and electrons in the ZY3 containing Fe sample appeared. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Well-crystallized hematite was suspended in water and treated at room-temperature (RT) with sodium borohydride. The product of the reaction is a highly magnetic black powder, which is stable at RT. The NaBH4 treatment converts about half of the hematite to an amorphous Fe–B alloy and to a small fraction of sub-micron sized, amorphous metallic-Fe nodules. Heating at 400°C of this composite has resulted in the crystallization and/or oxidation of more than half of the amorphous Fe–B phase to α-Fe and Fe3O4 and B2O3, respectively. After treatment at 800°C, the metallic Fe and the amorphous Fe–B have completely vanished, and the resulting product consists of hematite and FeBO3 embedded in the matrix of α-Fe2O3.  相似文献   

10.
This paper gives theoretical results on spinodal decomposition for the stochastic Cahn–Hilliard–Cook equation, which is a Cahn–Hilliard equation perturbed by additive stochastic noise. We prove that most realizations of the solution which start at a homogeneous state in the spinodal interval exhibit phase separation, leading to the formation of complex patterns of a characteristic size. In more detail, our results can be summarized as follows. The Cahn–Hilliard–Cook equation depends on a small positive parameter ε which models atomic scale interaction length. We quantify the behavior of solutions as ε→ 0. Specifically, we show that for the solution starting at a homogeneous state the probability of staying near a finite-dimensional subspace ?ε is high as long as the solution stays within distance r ε=O R ) of the homogeneous state. The subspace ?ε is an affine space corresponding to the highly unstable directions for the linearized deterministic equation. The exponent R depends on both the strength and the regularity of the noise. Received: 2 May 2000 / Accepted: 8 July 2001  相似文献   

11.
The field dependence of the nuclear spin-lattice relaxation (SLR) of cold implanted 82Br (T ≤ 25 mK) in α-Fe single crystals was investigated with nuclear magnetic resonance of oriented nuclei (NMR/ON) at low temperatures as experimental technique. The SLR at the lattice sites with the hyperfine fields found by earlier NMR/ON experiments was measured as a function of the applied external magnetic field B ext parallel to the three principle axes [100], [110] and [111] of the iron single crystal. The data were evaluated with the full relaxation formalism in the single impurity limit and for comparison also with the often employed model of a single exponential function with an effective relaxation time T 1′. With a phenomenological model the high field values of the relaxation rates r ∞, [100]′ = 6.6(2) · 10−15 T2sK−1, r ∞, [110] = 5.4(2) · 10−15 T2sK−1 and r ∞, [111] = 5.2(1) · 10−15 T2sK−1 were obtained.  相似文献   

12.
The excess 1/f noise in a random lattice with bond resistances r∼exp(−λx), where x is a random variable and λ≪1, is studied theoretically. It is shown that if the correlation function {δr 2}∼r r θ+2, then the relative spectral density of the noise in the system is expressed as C e∼λm exp(−λ(1−p c)), where p c is the percolation threshold and md (ν is the critical exponent of the correlation length and d is the dimensionality of the problem). It is hypothesized that the exponent m possesses a dual universality: It is independent of 1) the geometry of the lattice and 2) the θ-mechanism responsible for the generation of the local noise. Numerical modeling in a three-dimensional lattice gives m=52.3 for θ=1 and θ=0, in agreement with the hypothesis. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 8, 614–618 (25 April 1996)  相似文献   

13.
Lead-free piezoelectric ceramics Bi0.5(Na1-x-yKxAgy)0.5TiO3 [BNKAT(x/y)] have been synthesized by the mixed oxide method. The effects of the amount of K+ and Ag+ on the electrical properties were examined. X-ray diffraction patterns indicate that K+ and Ag+ ions partially substitute for the Na+ ions in Bi0.5Na0.5TiO3 and form a solid solution during sintering. At room temperature, the ceramics exhibit good performances with piezoelectric constant d33=189 pC/N, electromechanical coupling factor kp=35.0%, remanent polarization Pr=39.5 μC/cm2, and coercive field Ec=3.3 kV/mm, respectively. The curves of the dielectric constant εr and loss tangent tan δ versus temperature show that the transition temperature from ferroelectric to anti-ferroelectric phase decreases with increasing the K+ content for the compositions researched. The dependencies of kp and polarization versus electric (P–E) hysteresis loops on temperature reveal that the depolarization temperature Td of BNKAT(0.15/0.015) ceramics, which have good piezoelectric properties (d33=134 pC/N, kp=32.5%) and strong ferroelectricity (Pr=39.5 μC/cm2, Ec=4.1 kV/mm) at room temperature, is above 160 °C. PACS 77.22.-d; 77.65.Bn; 77.80.Bh; 77.80.Dj; 77.84.Dy  相似文献   

14.
Nanocrystalline CaCu3Ti4O12 powders were synthesized by a simple PVA sol–gel route and calcined at 700 and 800°C in air for 8 h. The diameter of the powders ranges from 40–100 nm. The calcined CaCu3Ti4O12 powders were characterized by TG-DTA, XRD, FTIR, SEM, and TEM. Sintering of the powders was conducted in air at 1100°C for 16 h. The XRD results indicated that all sintered samples had a typical perovskite CaCu3Ti4O12 structure although the sintered samples contained some amount of CaTiO3. SEM of the sintered CaCu3Ti4O12 ceramics showed the average grain sizes of 13–15 μm. The samples exhibit a giant dielectric constant, ε′∼105 at 150 to 200°C with weak temperature dependence below 1 kHz in the sample sintered using the powders calcined at 700°C. The Maxwell–Wagner polarization mechanism is used to explain the high permittivity in these ceramics. It is also found that all sintered samples have the same activation energy of grains, which is ∼0.122 eV.  相似文献   

15.
Ferroelectric Bi3.15Nd0.85Ti3O12 (BNdT) thin films of predominant 100/010/119 orientation were grown through a cheap and simple sol–gel process both on Nb-doped (011)SrTiO3 and on (011)SrRuO3/(011)SrTiO3. Using rapid heating rates during crystallization, films containing 28% (100)/(010)-oriented grains plus 19% (119)-oriented grains were obtained on SrRuO3/SrTiO3, while 30% (100)/(010)- and 18% (119)-oriented grains were obtained on Nb:SrTiO3. The films consist of columnar grains and 90° a–b domains exist in large BNdT grains. The BNdT thin films exhibit excellent ferroelectric and dielectric properties with a remanent polarization 2Pr=39.2 μC/cm2 and a dielectric constant εr=184.5. PACS 77.80.Fm; 77.80.Dj; 68.60.Wm; 68.55.Jk; 68.37.Lp  相似文献   

16.
Room temperature operating n-MOSFETs (n-type metal-oxide silicon field effect transistors) used for registration of sub-THz (sub-terahertz) radiation in the frequency range ν = 53−145 GHz are considered. n-MOSFETs were manufactured by 1-μm Si CMOS technology applied to epitaxial Si-layers (d ≈15 μm) deposited on thick Si substrates (d = 640 μm). It was shown that for transistors with the channel width to length ratio W/L = 20/3 μm without any special antennas used for radiation input, the noise equivalent power (NEP) for radiation frequency ν ≈76 GHz can reach NEP ∼6×10−10 W/Hz1/2. With estimated frequency dependent antenna effective area Sest for contact wires considered as antennas, the estimated possible noise equivalent power NEPpos for n-MOSFET structures themselves can be from ∼15 to ∼103 times better in the specral range of ν ∼55–78 GHz reaching NEPpos ≈10−12 W/Hz1/2.  相似文献   

17.
Lead-free (0.90-x)(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-x(Bi1/2Li1/2)TiO3-0.05BaTiO3 piezoelectric ceramics (abbreviated as BNKLBT-100x, with x ranged from 0 to 2.5 mol %) were prepared by a conventional mixed oxide method. Effects of the amount of (Bi1/2Li1/2)TiO3 (BLT) on the electrical properties and crystal structure of the BNKLBT ceramics were examined. BNKLBT-1.5 ceramics have good properties with piezoelectric constant d33=163 pC/N, electromechanical coupling factor kp=0.33, kt=0.53, relative permittivity εr=785 and dissipation factor cosδ=2.2% at 1 kHz. The sample has larger remnant polarization than BNKLBT-0 ceramics and the same coercive field as BNKLBT-0 ceramics. X-ray diffraction analysis shows that the incorporated BLT diffuses into the BNT–BKT–BT lattice to form a solid solution during sintering, but changes the crystal structure from rhombohedral to tetragonal symmetry at higher BLT amounts. Depolarization temperature (Td) of the BNKLBT-100x ceramics increases from 102 °C to ∼136 °C for BNKLBT-0 to BNKLBT-2.5. BNKLBT-1.5 is used as the transduction element in compressive type accelerometer and its sensitivity is calibrated by the back-to back method. Within the ±2.5% tolerance, the lead-free accelerometer has a mean value of 2.97 pC/ms-2 within 50 Hz–12.45 kHz and the lead-based accelerometer has a mean value of 4.34 pC/ms-2 within 50 Hz to 8.24 kHz. PACS 77.22.Ej; 77.84.-s; 85.50.-n  相似文献   

18.
We report an extrinsic magnetoelectric effect in composite laminates made by sandwiching one thickness-polarized 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN–PT) piezoelectric single crystal plate between two length-magnetized, polymer-based pseudo-1–3 (Tb0.3Dy0.7)0.5Pr0.5Fe1.55 magnetostrictive composite plates. The laminates exhibit large magnetoelectric voltage coefficients (α V ) of ∼0.17 V/Oe with a flat response for frequencies in excess of 40 kHz and of ∼2.97 V/Oe at the natural resonance frequency of ∼65 kHz. The distinct advantages of the laminates include high magnetic field sensitivity, low Joule heating loss, wide operating bandwidth, and low cost.  相似文献   

19.
Nanosize Li-ferrites were synthesised by the thermal decomposition of an appropriate mixture of complex compounds with acetylacetone - (2,4 pentadione) ligands ([M(AA)x]; M=Li and Fe) at 500 °C. The obtained sample is composed of three phases determined by the standard Rietveld procedure: Li0.5Fe2.5O4 (S.G. P4332), Li1.16Fe3O4 (S.G. Fd 3̄ m) and LiFeO2 (S.G. Fm 3̄ m). Cation distribution in nanosize ordered spinel Li0.5Fe2.5O4 deviates from that of the bulk counterpart. Microstructure parameters (crystallite size of ∼23 nm and strain of 3.2526(9)×103) were determined by the Rietveld refinement of the TCH-pV parameters. SEM microphotographs show a particle size of ∼50–60 nm. An order–disorder phase transition in ordered spinel Li0.5Fe2.5O4was studied by DSC measurements and in situ XRPD technique.The temperature of phase transition was found to be 762 °C (DSC) and (±) 7455°C.(XRPD)PACS 81.07.Bc; 81.16.Be; 61.66.Fn; 61.50.Ks  相似文献   

20.
The structure and magnetic properties of Fe-N and Fe-Ti-N films have been studied as a function of annealing temperature Ta with a transmission electron microscope and a vibrating sample magnetometer. The as-prepared Fe-N films consist of the γ-Fe4N and α′′-Fe16N2 phases, and the Fe-Ti-N films are composed of the γ-Fe4N, α′′-Fe16N2, and TiN phases. The structural changes with annealing temperature in the Fe-N films are distinct. The α′′-Fe16N2 decomposes into α+γ phases in the Fe-N film annealed at about 300 °C, and it disappears in the film annealed at 350 °C. Annealing of the Fe-Ti-N films shows no structural changes between room temperature (RT) and 500 °C. The saturation magnetization 4πMS and coercivity Hc of the Fe-N films change drastically with the annealing temperature Ta, whereas those of the Fe-Ti-N films do not change with Ta up to 500 °C. These results indicate that the additon of Ti may improve the thermal stability of Fe-N films. Recieved: 6 Juli 1998 / Accepted: 19 Oktober 1998 / Published online: 10 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号