首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is reported for the determination, in water samples, of 10 quinolones which are used as veterinary drugs. Analytes are isolated from samples by solid-phase extraction (SPE) and analysed by reversed-phase high-performance liquid chromatography using fluorimetric detection. A solid-phase extraction procedure based on retention on HBL OASIS cartridges and elution with a mixture of acetonitrile-water in basic medium is suitable for pre-concentration of the analytes. Pre-concentration factors up to 250 can be obtained. The quinolones are separated with an octyl silica-based column and mobile phases consisting of aqueous oxalic acid solutions and acetonitrile mixtures. The attained detection limits of the whole process are in the ng l(-1) level when 250 ml of water sample is processed. Recovery rates, from natural water samples spiked at 2060 ng l(-1) level, range from 70 to 100% and common standard deviation are about 6-12%.  相似文献   

2.
An analytical method is presented for the determination of sulfophenylcarboxylic acids (SPC) produced by the biodegradation of linear alkylbenzene sulfonates (LAS) in marine samples. Isolation and concentration of the compounds was by solid-phase extraction. The different factors affecting extraction efficiency packing composition, pH, clean-up, ionic strength, and elution solvents--were studied and optimized. With the proposed method C4-C13SPC and C10-C13 LAS recoveries varied between 65% and 105%, with standard deviations between 0.1 and 5, respectively, for 100-mL samples and 100 microg L(-1) concentrations of each homolog. Detection limits within the range 0.5 g L(-1) (for C4SPC) to 1.0 g L(-1) (for C12SPC) were obtained by liquid chromatography with fluorescence detection. This method is the first to be proposed that enables the simultaneous determination of monocarboxylic SPC (C>3) and LAS homologs in marine samples by a simple, sensitive, and specific method giving high recoveries and reproducibility. SPC with from three to twelve carbon atoms in the carboxyl chain have been found in marine water samples.  相似文献   

3.
The chelating agent EDTA is widely used, and as a result is showing up widely in the aquatic environment. Here we describe a preconcentration procedure for measuring EDTA concentration in sea water samples by HPLC. The procedure consists of forming an Fe(III) complex followed by solid-phase extraction using an activated carbon cartridge. After the preconcentration, EDTA was quantified by HPLC with ultraviolet detection (260 nm). The enrichment permitted the determination of EDTA at concentrations as low as 1 nM. Good recoveries were obtained for both brackish and full-strength sea water with high repeatability (RSD < 6%). The method was applied to sea water samples taken from near the mouth of the Oyabe River in Japan.  相似文献   

4.
Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, < 7%), correlation coefficient (> 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.  相似文献   

5.
Wang  Xuemei  Wang  Juan  Du  Tongtong  Kou  Haixia  Du  Xinzhen  Lu  Xiaoquan 《Analytical and bioanalytical chemistry》2018,410(26):6955-6962
Analytical and Bioanalytical Chemistry - An approach for fabrication of graphene sponge (GS)-based solid-phase extraction (SPE) followed by high-performance liquid chromatography (HPLC) with...  相似文献   

6.
This article proposes an alternative method, using cloud-point extraction and gas chromatography, for extraction and determination of disulfoton in water samples. For cloud-point extraction, the nonionic surfactant Triton X-114 was used. Before gas chromatography, a cleanup stage for surfactant removal from the extracts was optimized. Cleanup used two columns, in series, containing silica gel and Florisil, with methanol:hexane (1?:?1) as eluent, resulting in the removal of more than 95% of the Triton X-114. Factors such as ionic strength (>0.5?mol?L?1) and surfactant concentration (1.0% w/v) increased the extraction efficiency of the cloud-point methodology, yielding disulfoton recoveries of almost 100%. Compared with liquid–liquid extraction, the cloud-point methodology was more efficient, with a better detectability, and resulted in a significant reduction in solvent volume.  相似文献   

7.
固相萃取-气相色谱法测定北京市水样中的邻苯二甲酸酯   总被引:16,自引:0,他引:16  
研究了使用毛细管柱(OV-1701)分离、FID作为检测器的气相色谱法测定水中5种邻苯二甲酸酯(PAEs)[邻苯二甲酸二乙酯(DEP),邻苯二甲酸二丁酯(DBP),邻苯二甲酸丁基苄基酯(BBP),邻苯二甲酸二(2-乙基己基)酯(DEHP),邻苯二甲酸二环己酯(DCHP)]的色谱条件。5种PAEs检出限在0.1~0.3μg/L之间,所测PAEs的质量浓度在0.5~100μg/L范围内,RSD在2.2%~3.3%之间,各物质校正曲线(质量浓度与峰面积)的相关系数在0.9970~0.9993之间。利用固相萃取技术萃取水中PAEs,回收率在82.5%~110.5%之间,RSD在1.1%~4.0%之间。北京市吴家村污水处理厂4个采样点中邻苯二甲酸酯浓度在(0.7~193.3)μg/L之间。北京市南护城河的3个采样点中邻苯二甲酸酯浓度在(0.1~241.8)μg/L之间。  相似文献   

8.
Zhang  Xue  Yu  Hong  Cai  Ya-qi 《Analytical and bioanalytical chemistry》2019,411(16):3427-3434

An ion chromatography and solid-phase extraction method has been applied for the separation and detection of morpholinium cations in environmental water samples. The water samples were purified and enriched by a UF-SCX sulfonic acid extraction column and eluted with 0.5 mol L−1 phosphoric acid/sodium dihydrogen phosphate buffer solution/55% methanol. The target compounds were separated on a carboxylic acid cation exchange column with 5.0 mmol L−1 methane sulfonic acid/2% acetonitrile as the mobile phase and direct conductivity detection. The method has been successfully applied to extract morpholinium cations from spiked water samples of Songhua River, Hulan River, East Lake, and Mopanshan Reservoir in China with the recoveries ranging from 75.0% to 98.3%. The relative standard deviations of intraday precision and interday precision are 2.1% and 5.9% or less, respectively. Using this method it is possible to preconcentrate water samples to 0.01–0.04 mg L−1. The results show that the method is applicable to detection of morpholinium ionic liquid cations in environmental water samples and provides a new approach for monitoring ionic liquids in environmental water.

The analysis procedure of morpholinium ionic liquids in environmental water samples.

  相似文献   

9.
10.
A new method was developed for simultaneous determination of five phthalate esters by a combination of mat-based solid-phase extraction (SPE) with high-performance liquid chromatography. The mat is composed of Nylon6 nanofibers. Dimethyl phthalate (DMP), diethl phthalate (DEP), di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP) were successfully separated on a RP-C18 column. Under optimized conditions, the detection limits found for DMP, DEP, DBP, DEHP and DOP were 3, 2, 6, 10 and 33 pg mL?1, respectively. The method was applied to the analysis of various water samples. Spiked samples gave recoveries in the range from 86.9 to 101.9%, with relative standard deviations below 7.0%. A comparison of Nylon6 nanofibers mat as sorbents, and C18 cartridges and other kinds of SPE sorbents was carried out with respect to recovery, sensitivity, and reproducibility. The results indicated that the Nylon mat is a viable material for the enrichment and determination of phthalate esters in environmental water samples.  相似文献   

11.
A method was developed for the determination of tylosin in feeds. The method involves extraction of tylosin with methanol, concentration under a stream of nitrogen, and cleanup using Phenomenex C18 solid-phase extraction cartridge. Analyte separation and quantitation were achieved by gradient reversed-phase liquid chromatography and UV absorbance at 285 nm with a reference wavelength of 320 nm with column temperature of 45 degrees C. Average spike recoveries for samples prepared at 4 spiking levels (22.7, 181, 907, and 1000 g/ton) were 111.0, 94.9, 96.2, and 98.6%, respectively. The overall method precision at each of the 4 spiking levels was < or = 7.85% relative standard deviation. The limits of detection and quantitation (g/ton) were 2.16 and 7.20 g/ton, respectively.  相似文献   

12.
When explosives are present in natural aqueous media, their concentration is usually limited to trace levels. A preconcentration step able to remove matrix interferences and to enhance sensitivity is therefore necessary. In the present study, we evaluated solid-phase microextraction (SPME) technique for the recovery of nine explosives from aqueous samples using high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Several parameters, including adsorption and desorption time, coating type, rate of stirring, salt addition, and pH, were optimized to obtain reproducible data with good accuracy. Carbowax coating was the only adsorbent found capable of adsorbing all explosives including nitramines. Method detection limits (MDL) were found to range from 1 to 10 microg/L, depending on the analyte. SPME/HPLC-UV coupling was then applied to the analysis of natural ocean and groundwater samples and compared to conventional solid-phase extraction (SPE/HPLC-UV). Excellent agreement was observed between both techniques, but with an analysis time around five times shorter, SPME/HPLC-UV was considered to be applicable for quantitative analysis of explosives.  相似文献   

13.
Poly(styrene-divinylbenzene) (PS-DVB) membrane extraction disks were used as sorbents for the on-line solid phase extraction of 13 phenols (nitro and chlorophenols) in river and tap waters. Determination was performed by liquid chromatography with electrochemical detection (LC-ED). An acetate buffer-acetonitrile-methanol mixture as mobile phase and amperometric detection at +1100 mV were used. High water volumes, up to 250 ml, can be preconcentrated without loss of phenols (recoveries between 80% and 100%) except for the more polar ones. Moreover, detection limits between 0.01 and 0.1 μg l−1 in tap water and between 0.1 and 1.0 μg−1 in river water were obtained. The method has been applied to the analysis of two river water samples.  相似文献   

14.
Despite having been the focus of much attention from the scientific community during recent years, glyphosate is still a challenging compound from an analytical point of view because of its physicochemical properties: relatively low molecular weight, high polarity, high water solubility, low organic solvent solubility, amphoteric behaviour and ease to form metal complexes. Large efforts have been directed towards developing suitable, sensitive and robust methods for the routine analysis of this widely used herbicide. In the present work, a magnetic particle immunoassay (IA) has been evaluated for fast, reliable and accurate part-per-trillion monitoring of glyphosate in water matrixes, in combination with a new analytical method based on solid-phase extraction (SPE), followed by liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS), for the confirmatory analysis of positive samples. The magnetic particle IA has been applied to the analysis of about 140 samples of groundwater from Catalonia (NE Spain) collected during four sampling campaigns. Glyphosate was present above limit of quantification levels in 41% of the samples with concentrations as high as 2.5 μg/L and a mean concentration of 200 ng/L. Good agreement was obtained when comparing the results from IA and on-line SPE-LC-MS/MS analyses. In addition, no false negatives were obtained by the use of the rapid IA. This is one of the few works related to the analysis of glyphosate in real groundwater samples and the presented data confirm that, although it has low mobility in soils, glyphosate is capable of reaching groundwater.  相似文献   

15.
An analytical method was developed for the determination of 2,6-dichlorobenzamide (BAM) and five degradation products thereof including 2-chlorobenzamide (OBAM), 2,6-dichlorobenzoic acid (DCBA), 2-chlorobenzoic acid (OBA), benzoic acid (BA) and benzamide (BAD) in water samples. Solid-phase extraction was combined with liquid chromatography coupled to tandem mass spectrometry using electrospray ionisation. Groundwater spiked at a concentration of 1.0 μg/L gave recoveries on day 1 between 91 and 102% (relative standard deviation: 2.2–26.5%) for OBAM, BAM, DCBA, BA and OBA, while BAD showed a somewhat lower recovery of 60% (relative standard deviation: 25%). Corresponding figures on day 3 gave recoveries of 97–110% (relative standard deviation: 3–22%) for OBAM, BAM, DCBA, BA and OBA, while BAD had a recovery of 51% (relative standard deviation: 4%). The final SPE-LC–MS/MS method had a LODMethod of 0.009, 0.007, 0.010, 0.021, 0.253 and 0.170 μg/L groundwater for BAD, OBAM, BAM, DCBA, BA and OBA and a LOQMethod of 0.030, 0.023, 0.035, 0.071, 0.842 and 0.565 μg/L groundwater in the same order of appearance. Analysis of three different Danish groundwaters confirmed the occurrence of BAM at levels exceeding the threshold value of 0.1 μg/L, while no degradation products were found above LODMethod.  相似文献   

16.
A high-performance liquid chromatography procedure or the determination of the herbicides simazine, propazine, bromacil, metoxuron, and hexazinone is elaborated. Stationary phases RP8 and RP18 and mixtures of methanol-water (2:1 and 1:1, v/v) as a mobile phase are applied for this purpose. The conditions for solid-phase extraction are established, allowing the separation of phenols and herbicides in their mixtures and the extraction of phenols (from river and coke plant water) and herbicides (from the soil samples).  相似文献   

17.
Extraction and determination of seven aromatic amines in environmental water samples were performed with solid-phase extraction (SPE) and micellar liquid chromatography (MLC) using experimental design. Extraction of aromatic amines was carried out with a C18 cartridge modified with sodium dodecyl sulphate (SDS). The washing solution and elution solvent for extraction of aromatic amines were aqueous solution containing 5% (v/v) acetonitrile and 5% (v/v) acetone and 3 mL methanol, respectively. The chemometrics approach was applied for the separation optimisation of these compounds using MLC. Different mobile phase compositions were used for modelling based on retention times to obtain the best separation using central composite design. The optimum mobile phase composition for separation and determination of analytes in water samples was 69 mM SDS, 9% v/v 1-propanol and pH = 6.4. Recoveries were between 84.8–93.5% with relative standard deviation (RSD) less than 5.8% (n = 5). Limits of detection and linear range were 1–4.5 and 3.1–125.0 µg/L, respectively. The proposed method was applied to determine the aromatic amines in real samples (river and well waters). Amount of 4-nitroaniline and 3-nitroaniline in river water sample were 2.15 and 1.91 µg/L, respectively.  相似文献   

18.
A liquid chromatographic method was developed for the determination of penicillin G in feeds. The method involves extraction of penicillin G with methanol, concentration under a stream of nitrogen, and cleanup using Phenomenex Strata-X solid-phase extraction cartridge. Analyte separation and quantification were achieved by gradient reversed-phase liquid chromatography and ultraviolet absorbance at 230 nm. Average spike recoveries for samples prepared at 3 spiking levels (25, 50, and 200 g/ton) were 96.3, 92.1, and 88.6%, respectively. The overall method precision at each of the 3 spiking levels was < or = 5.39% relative standard deviation. The limits of detection and quantititation (g/ton formulation) were 3.89 and 13.0 g/ton, respectively.  相似文献   

19.
Summary The eleven Environmental Protection Agency (EPA) priority phenolic compounds have been determined by solid-phase extraction (SPE) coupled on-line to supercritical-fluid chromatography (SFC) with diodearray detection. The variables affecting chromatographic separation were optimized and the analytes were separated at 40 °C in two diol columns connected in series; a gradient of methanol, as modifier, and CO2 was used as mobile phase. Under these conditions, all the compounds studied were separated to baseline in less than 13 min. PLRP-S and LiChrolut EN were tested as sorbents in a 10×3 mm i.d. laboratory-packed precolumn for solid-phase extraction. An ion-pair reagent, tetrabutylammonium bromide (TBA), was used in the extraction process to increase break-through volumes. The performance of the method was checked with tap and river waters and the pre-concentration of 20 mL of sample in a PLRP-S pre-column enabled phenolic compounds to be determined at low μg L−1 levels with limits of detection ranging between 0.4 and 2 μg L−1. The repeatability and reproducibility between days (n=3) for real samples spiked at 10 μg L−1 were lower than 10%.  相似文献   

20.
The analysis of pesticides in water samples is a problem of primary concern for quality control laboratories due to the toxicity level of these compounds and their public health risk. In order to evaluate the impact of pesticides in the Lisbon drinking water supply system, following the requirements of the European Union Directive 98/83/EC, we developed and validated an analytical method based on the combination of solid-phase extraction with liquid chromatography and tandem mass spectrometry. In this work, several pesticides were studied: imidacloprid, dimethoate, cymoxanil, carbendazime, phosmet, carbofuran, isoproturon, diuron, methidathion, linuron, pyrimethanil, methiocarbe, tebuconazole and chlorpyrifos. Several parameters of the electrospray source were optimized in order to get the best formation conditions of the precursor ion for each pesticide, namely capillary and extractor voltage, cone voltage, cone gas flow rate and desolvation gas flow rate. After optimization of the collision cell energy of the triple quadrupole, two different precursor ion-product ion transitions were selected for each pesticide, one for quantification and one for qualification, and these ions were monitored under time-scheduled multiple reaction monitoring (MRM) conditions. The selection of specific fragment ions for each pesticide guarantees a high degree of selectivity as well as additional sensitivity to quantify trace levels of these pesticides in water samples. This method showed excellent linearity ranges for all pesticides, with correlation coefficients greater than 0.9989. Determination limits (between 0.0041 and 0.0480 microg/L), precision (RSD <9.18%), accuracy and recovery studies in several water samples using solid-phase extraction were also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号