首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we apply the exp-function method to construct generalized solitary and periodic solutions of nonlinear evolution equations with variable coefficients. The proposed technique is tested on the Zakharov-Kuznetsov and (2+1)-dimensional Broer-Kaup equations with variable coefficients. These equations play a very important role in mathematical physics and engineering sciences. The suggested algorithm is quite efficient and is practically well suited for use in these problems. Obtained results clearly indicate the reliability and efficiency of the proposed exp-function method.  相似文献   

2.
This paper is devoted to the Cauchy problem for the nonlinear Schrodinger equation with time‐dependent fractional damping term. We prove the local existence result, and we study the global existence and blow‐up solutions.  相似文献   

3.
We present a high‐order spectral element method (SEM) using modal (or hierarchical) basis for modeling of some nonlinear second‐order partial differential equations in two‐dimensional spatial space. The discretization is based on the conforming spectral element technique in space and the semi‐implicit or the explicit finite difference formula in time. Unlike the nodal SEM, which is based on the Lagrange polynomials associated with the Gauss–Lobatto–Legendre or Chebyshev quadrature nodes, the Lobatto polynomials are used in this paper as modal basis. Using modal bases due to their orthogonal properties enables us to exactly obtain the elemental matrices provided that the element‐wise mapping has the constant Jacobian. The difficulty of implementation of modal approximations for nonlinear problems is treated in this paper by expanding the nonlinear terms in the weak form of differential equations in terms of the Lobatto polynomials on each element using the fast Fourier transform (FFT). Utilization of the Fourier interpolation on equidistant points in the FFT algorithm and the enough polynomial order of approximation of the nonlinear terms can lead to minimize the aliasing error. Also, this approach leads to finding numerical solution of a nonlinear differential equation through solving a system of linear algebraic equations. Numerical results for some famous nonlinear equations illustrate efficiency, stability and convergence properties of the approximation scheme, which is exponential in space and up to third‐order in time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, the new exact travelling wave solutions of the nonlinear space‐time fractional Burger's, the nonlinear space‐time fractional Telegraph and the nonlinear space‐time fractional Fisher equations have been found. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into ordinary differential equations of integer order in the sense of the Jumarie's modified Riemann–Liouville derivative. The ‐expansion method is effective for constructing solutions to the nonlinear fractional equations, and it appears to be easier and more convenient by means of a symbolic computation system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we employ the complex method to obtain all meromorphic exact solutions of complex Klein–Gordon (KG) equation, modified Korteweg‐de Vries (mKdV) equation, and the generalized Boussinesq (gB) equation at first, then find all exact solutions of the Equations KG, mKdV, and gB. The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic solutions are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions w2r,2(z) and simply periodic solutions w1s,2(z),w2s,1(z) in these equations such that they are not only new but also not degenerated successively by the elliptic function solutions. We have also given some computer simulations to illustrate our main results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In thiswork,we present two new(3+1)‐dimensional nonlinear equationswith Korteweg‐de Vries equation constituting its main part. We show that the dispersive relation is distinct for each model, whereas the phase shift remains the same. We determine multiple solitons solutions, with distinct physical structures, for each established equation. The architectures of the simplified Hirota's method is implemented in this paper. The constraint conditions that fall out which must remain valid in order for themultiple solitons to exist are derived.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) based on off-step discretization for the solution of 3-space dimensional non-linear wave equation of the form utt = A(x,y,z,t)uxx + B(x,y,z,t)uyy + C(x,y,z,t)uzz + g(x,y,z,t,u,ux,uy,uz,ut), 0 < x,y,z < 1,t > 0 subject to given appropriate initial and Dirichlet boundary conditions, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We use only seven evaluations of the function g as compared to nine evaluations of the same function discussed in  and . We describe the derivation procedure in details of the algorithm. The proposed numerical algorithm is directly applicable to wave equation in polar coordinates and we do not require any fictitious points to discretize the differential equation. The proposed method when applied to a telegraphic equation is also shown to be unconditionally stable. Comparative numerical results are provided to justify the usefulness of the proposed method.  相似文献   

8.
In this paper, we apply the boundary integral equation technique and the dual reciprocity boundary elements method (DRBEM) for the numerical solution of linear and nonlinear time‐fractional partial differential equations (TFPDEs). The main aim of the present paper is to examine the applicability and efficiency of DRBEM for solving TFPDEs. We employ the time‐stepping scheme to approximate the time derivative, and the method of linear radial basis functions is also used in the DRBEM technique. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity that appears in the nonlinear problems under consideration. To confirm the accuracy of the new approach, several examples are presented. The convergence of the DRBEM is studied numerically by comparing the exact solutions of the problems under investigation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A new variety of (3 + 1)‐dimensional Burgers equations is presented. The recursion operator of the Burgers equation is employed to establish these higher‐dimensional integrable models. A generalized dispersion relation and a generalized form for the one kink solutions is developed. The new equations generate distinct solitons structures and distinct dispersion relations as well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the first integral method is employed for constructing the new exact travelling wave solutions of nonlinear partial differential equations. The power of this manageable method is confirmed by applying it for two selected nonlinear partial equations. This approach can also be applied to other systems of nonlinear differential equations.  相似文献   

11.
In this paper, we extend the basic Exp‐function method to nonlinear lattice differential equations for constructing multi‐wave and rational solutions for the first time. We consider a differential‐difference analogue of the Korteweg–de Vries equation to elucidate the solution procedure. Our approach is direct and unifying in the sense that the bilinear formalism of the equation studied becomes redundant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We use a modification of Krasnoselskii's fixed point theorem introduced by Burton to show the periodicity and non‐negativity of solutions for the nonlinear neutral differential equation with variable delay We invert this equation to construct the sum of a compact map and a large contraction, which is suitable for applying the modification of Krasnoselskii's theorem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we investigate a (3+1)‐dimensional Boiti‐Leon‐Manna‐Pempinelli equation (3D‐BMLP). By using bilinear forms under certain conditions, we obtain different wave structures for the 3D‐BMLP. Among these waves, lump waves, breather waves, mixed waves, and multi‐soliton wave solutions are constructed. The propagation and the dynamical behavior of the obtained solutions are discussed for different values of the free parameters.  相似文献   

14.
In this article, we try to obtain approximate Jacobi elliptic function solutions of the (1 + 1)‐dimensional long wave equation using Homotopy Perturbation Method. This method deforms a difficult problem into a simple problem which can be easily solved. In comparison with HPM, numerical methods leads to inaccurate results when the equation intensively depends on time, while He's method overcome the above shortcomings completely and can therefore be widely applicable in engineering. As a result, we obtain the approximate solution of the (1 + 1)‐dimensional long wave equation with initial conditions. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

15.
The article presents a new general solution to a loaded differential equation and describes its properties. Solving a linear boundary value problem for loaded differential equation is reduced to the solving a system of linear algebraic equations with respect to the arbitrary vectors of general solution introduced. The system's coefficients and right sides are computed by solving the Cauchy problems for ordinary differential equations. Algorithms of constructing a new general solution and solving a linear boundary value problem for loaded differential equation are offered. Linear boundary value problem for the Fredholm integro‐differential equation is approximated by the linear boundary value problem for loaded differential equation. A mutual relationship between the qualitative properties of original and approximate problems is obtained, and the estimates for differences between their solutions are given. The paper proposes numerical and approximate methods of solving a linear boundary value problem for the Fredholm integro‐differential equation and examines their convergence, stability, and accuracy.  相似文献   

16.
In this paper, we obtain conservation laws of (2+1) dimensional Calogero–Bogoyavlenskii–Schiff equation by non‐local conservation theorem method. Besides, exact solutions are obtained by the aid of the symmetries associated with conservation laws. Double reduction is used to obtain these exact solution of Calogero–Bogoyavlenskii–Schiff equation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
In this paper, the one- and two-periodic wave solutions for the (3+1)-dimensional Kadomtsev-Petviashvili equation are presented by means of the Hirota’s bilinear method and the Riemann theta function. The rigorous proofs on asymptotic behaviors of these two solutions are given that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.  相似文献   

19.
We investigate a generalized (3 + 1)-dimensional nonlinear wave equation, which can be used to depict many nonlinear phenomena in liquid containing gas bubbles. By employing the Hirota bilinear method, we derive its bilinear formalism and soliton solutions succinctly. Meanwhile, the first-order lump wave solution and second-order lump wave solution are well presented based on the corresponding two-soliton solution and four-soliton solution. Furthermore, two types of hybrid solutions are systematically established by using the long wave limit method. Finally, the graphical analyses of the obtained solutions are represented in order to better understand their dynamical behaviors.  相似文献   

20.
The nonlinear Klein–Gordon equation is used to model many nonlinear phenomena. In this paper, we propose a numerical scheme to solve the one-dimensional nonlinear Klein–Gordon equation with quadratic and cubic nonlinearity. Our scheme uses the collocation points and approximates the solution using Thin Plate Splines (TPS) radial basis functions (RBF). The implementation of the method is simple as finite difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号