首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of resolvable packings of Kv with Kr × Kc's is motivated by the use of DNA library screening. We call such a packing a (v, Kr × Kc, 1)‐RP. As usual, a (v, Kr × Kc, 1)‐RP with the largest possible number of parallel classes (or, equivalently, the largest possible number of blocks) is called optimal. The resolvability implies v ≡ 0 (mod rc). Let ρ be the number of parallel classes of a (v, Kr × Kc, 1)‐RP. Then we have ρ ≤ ?(v‐1)/(r + c ? 2)?. In this article, we present a number of constructive methods to obtain optimal (v, K2 × Kc, 1)‐RPs meeting the aforementioned bound and establish some existence results. In particular, we show that an optimal (v, K2 × K3, 1)‐RP meeting the bound exists if and only if v ≡ 0 (mod 6). © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 177–189, 2009  相似文献   

2.
Let v, k be positive integers and k ≥ 3, then Kk = : {v: vk} is a 3‐BD closed set. Two finite generating sets of 3‐BD closed sets K4 and K5 are obtained by H. Hanani [5] and Qiurong Wu [12] respectively. In this article we show that if v ≥ 6, then vB3(K,1), where K = {6,7,…,41,45,46,47,51,52,53,83,84}\{22,26}; that is, we show that K is a generating set for K6. Finally we show that vB3(6,20) for all vK\{35,39,40,45}. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 128–136, 2008  相似文献   

3.
In any r‐uniform hypergraph for 2 ≤ tr we define an r‐uniform t‐tight Berge‐cycle of length ?, denoted by C?(r, t), as a sequence of distinct vertices v1, v2, … , v?, such that for each set (vi, vi + 1, … , vi + t ? 1) of t consecutive vertices on the cycle, there is an edge Ei of that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ ?, where ? + jj. For t = 2 we get the classical Berge‐cycle and for t = r we get the so‐called tight cycle. In this note we formulate the following conjecture. For any fixed 2 ≤ c, tr satisfying c + tr + 1 and sufficiently large n, if we color the edges of Kn(r), the complete r‐uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t‐tight Berge‐cycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 34–44, 2008  相似文献   

4.
Generalizing the well‐known concept of an i‐perfect cycle system, Pasotti [Pasotti, in press, Australas J Combin] defined a Γ‐decomposition (Γ‐factorization) of a complete graph Kv to be i‐perfect if for every edge [x, y] of Kv there is exactly one block of the decomposition (factor of the factorization) in which x and y have distance i. In particular, a Γ‐decomposition (Γ‐factorization) of Kv that is i‐perfect for any i not exceeding the diameter of a connected graph Γ will be said a Steiner (Kirkman) Γ‐system of order v. In this article we first observe that as a consequence of the deep theory on decompositions of edge‐colored graphs developed by Lamken and Wilson [Lamken and Wilson, 2000, J Combin Theory Ser A 89, 149–200], there are infinitely many values of v for which there exists an i‐perfect Γ‐decomposition of Kv provided that Γ is an i‐equidistance graph, namely a graph such that the number of pairs of vertices at distance i is equal to the number of its edges. Then we give some concrete direct constructions for elementary abelian Steiner Γ‐systems with Γ the wheel on 8 vertices or a circulant graph, and for elementary abelian 2‐perfect cube‐factorizations. We also present some recursive constructions and some results on 2‐transitive Kirkman Γ‐systems. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 197–209, 2009  相似文献   

5.
Suppose G is a graph, k is a non‐negative integer. We say G is k‐antimagic if there is an injection f: E→{1, 2, …, |E| + k} such that for any two distinct vertices u and v, . We say G is weighted‐k‐antimagic if for any vertex weight function w: V→?, there is an injection f: E→{1, 2, …, |E| + k} such that for any two distinct vertices u and v, . A well‐known conjecture asserts that every connected graph GK2 is 0‐antimagic. On the other hand, there are connected graphs GK2 which are not weighted‐1‐antimagic. It is unknown whether every connected graph GK2 is weighted‐2‐antimagic. In this paper, we prove that if G has a universal vertex, then G is weighted‐2‐antimagic. If G has a prime number of vertices and has a Hamiltonian path, then G is weighted‐1‐antimagic. We also prove that every connected graph GK2 on n vertices is weighted‐ ?3n/2?‐antimagic. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

6.
Let K be a graph on r vertices and let G = (V,E) be another graph on ∣V ∣ = n vertices. Denote the set of all copies of K in G by 𝒦. A non‐negative real‐valued function f : 𝒦→ ℝ+ is called a fractional K‐factor if ∑ K:vK∈𝒦f(K) ≤ 1 for every vV and ∑ K∈𝒦f(K) = n/r. For a non‐empty graph K let d(K) = e(K)/v(K) and d(1)(K) = e(K)/(v(K) ‐ 1). We say that K is strictly K1‐balanced if for every proper subgraph KK, d(1)(K) < d(1)(K). We say that K is imbalanced if it has a subgraph K such that d(K) > d(K). Considering a random graph process on n vertices, we show that if K is strictly K1‐balanced, then with probability tending to 1 as n, at the first moment τ0 when every vertex is covered by a copy of K, the graph has a fractional K‐factor. This result is the best possible. As a consequence, if K is K1‐balanced, we derive the threshold probability function for a random graph to have a fractional K‐factor. On the other hand, we show that if K is an imbalanced graph, then for asymptotically almost every graph process there is a gap between τ0 and the appearance of a fractional K‐factor. We also introduce and apply a criteria for perfect fractional matchings in hypergraphs in terms of expansion properties. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

7.
In this paper, we look at the existence of (v K) pairwise balanced designs (PBDs) for a few sets K of prime powers ≥ 8 and also for a number of subsets K of {5, 6, 7, 8, 9}, which contain {5}. For K = {5, 7}, {5, 8}, {5, 7, 9}, we reduce the largest v for which a (v, K)‐PBD is unknown to 639, 812, and 179, respectively. When K is Q≥8, the set of all prime powers ≥ 8, we find several new designs for 1,180 ≤ v ≤ 1,270, and reduce the largest unsolved case to 1,802. For K =Q0,1,5(8), the set of prime powers ≥ 8 and ≡ 0, 1, or 5 (mod 8) we reduce the largest unknown case from 8,108 to 2,612. We also obtain slight improvements when K is one of {8, 9} or Q0,1(8), the set of prime powers ≡ 0 or 1 (mod 8). © 2004 Wiley Periodicals, Inc.  相似文献   

8.
Lan Xu  Baoyindureng Wu   《Discrete Mathematics》2008,308(22):5144-5148
The transformation graph G-+- of a graph G is the graph with vertex set V(G)E(G), in which two vertices u and v are joined by an edge if one of the following conditions holds: (i) u,vV(G) and they are not adjacent in G, (ii) u,vE(G) and they are adjacent in G, (iii) one of u and v is in V(G) while the other is in E(G), and they are not incident in G. In this paper, for any graph G, we determine the connectivity and the independence number of G-+-. Furthermore, for a graph G of order n4, we show that G-+- is hamiltonian if and only if G is not isomorphic to any graph in {2K1+K2,K1+K3}{K1,n-1,K1,n-1+e,K1,n-2+K1}.  相似文献   

9.
We study large values of the remainder term EK (x) in the asymptotic formula for the number of irreducible integers in an algebraic number field K. We show that EK (x) = Ω± (√(x)(log x)) for certain positive constant BK, improving in that way the previously best known estimate EK (x) = Ω± (x(1/2)‐ε) for every ε > 0, due to A. Perelli and the present author. Assuming that no entire L‐function from the Selberg class vanishes on the vertical line σ = 1, we show that EK (x) = Ω± (√(x)(log log x)D (K)‐1(log x)‐1), supporting a conjecture raised recently by the author. In particular, it follows that the last omega estimate is a consequence of the Selberg Orthonormality Conjecture (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this article, necessary and sufficient conditions for the existence of a 1‐rotationally resolvable even‐cycle system of λKv are given, which are eventually for the existence of a resolvable even‐cycle system of λKv. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 394–407, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10058  相似文献   

11.
The necessary and sufficient conditions for the existence of a 1‐rotational k‐cycle system of the complete graph Kv are established. The proof provides an algorithm able to determine, directly and explicitly, an odd k‐cycle system of Kv whenever such a system exists. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 283–293, 2009  相似文献   

12.
Let (K, v) be a perfect rank one valued field and let ([`(Kv)],[`(v)]){(\overline{K_{v}},\overline{v})} be the canonical valued field obtained from (K, v) by the unique extension of the valuation [(v)\tilde]{\widetilde{v}} of K v , the completion of K relative to v, to a fixed algebraic closure [`(Kv)]{\overline{K_{v}}} of K v . Let [`(K)]{\overline{K}} be the algebraic closure of K in [`(Kv)]{\overline {K_{v}}}. An algebraic extension L of K, L ì [`(K)]{L\subset\overline{K}}, is said to be a v-adic maximal extension, if [`(v)] | L{\overline{v}\mid_{L}} is the only extension of v to L and L is maximal with this property. In this paper we describe some basic properties of such extensions and we consider them in connection with the v-adic spectral norm on [`(K)]{\overline{K}} and with the absolute Galois groups Gal([`(K)]/K){(\overline{K}/K)} and Gal([`(Kv)] /Kv){(\overline{K_{v}} /K_{v})}. Some other auxiliary results are given, which may be useful for other purposes.  相似文献   

13.
We prove that if G is a 5‐connected graph embedded on a surface Σ (other than the sphere) with face‐width at least 5, then G contains a subdivision of K5. This is a special case of a conjecture of P. Seymour, that every 5‐connected nonplanar graph contains a subdivision of K5. Moreover, we prove that if G is 6‐connected and embedded with face‐width at least 5, then for every vV(G), G contains a subdivision of K5 whose branch vertices are v and four neighbors of v.  相似文献   

14.
In this article, we consider the following problem. Given four distinct vertices v1,v2,v3,v4. How many edges guarantee the existence of seven connected disjoint subgraphs Xi for i = 1,…, 7 such that Xj contains vj for j = 1, 2, 3, 4 and for j = 1, 2, 3, 4, Xj has a neighbor to each Xk with k = 5, 6, 7. This is the so called “rooted K3, 4‐minor problem.” There are only few known results on rooted minor problems, for example, [15,6]. In this article, we prove that a 4‐connected graph with n vertices and at least 5n ? 14 edges has a rooted K3,4‐minor. In the proof we use a lemma on graphs with 9 vertices, proved by computer search. We also consider the similar problems concerning rooted K3,3‐minor problem, and rooted K3,2‐minor problem. More precisely, the first theorem says that if G is 3‐connected and e(G) ≥ 4|G| ? 9 then G has a rooted K3,3‐minor, and the second theorem says that if G is 2‐connected and e(G) ≥ 13/5|G| ? 17/5 then G has a rooted K3,2‐minor. In the second case, the extremal function for the number of edges is best possible. These results are then used in the proof of our forthcoming articles 7 , 8 . © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 191–207, 2007  相似文献   

15.
We exhibit cyclic (Kv, Ck)‐designs with v > k, vk (mod 2k), for k an odd prime power but not a prime, and for k = 15. Such values were the only ones not to be analyzed yet, under the hypothesis vk (mod 2k). Our construction avails of Rosa sequences and approximates the Hamiltonian case (v = k), which is known to admit no cyclic design with the same values of k. As a particular consequence, we settle the existence question for cyclic (Kv, Ck)‐designs with k a prime power. © 2004 Wiley Periodicals, Inc. J Combin Designs 12: 299–310, 2004.  相似文献   

16.
In this article, we study the classification of flag‐transitive, point‐primitive 2‐ (v, k, 4) symmetric designs. We prove that if the socle of the automorphism group G of a flag‐transitive, point‐primitive nontrivial 2‐ (v, k, 4) symmetric design ?? is an alternating group An for n≥5, then (v, k) = (15, 8) and ?? is one of the following: (i) The points of ?? are those of the projective space PG(3, 2) and the blocks are the complements of the planes of PG(3, 2), G = A7 or A8, and the stabilizer Gx of a point x of ?? is L3(2) or AGL3(2), respectively. (ii) The points of ?? are the edges of the complete graph K6 and the blocks are the complete bipartite subgraphs K2, 4 of K6, G = A6 or S6, and Gx = S4 or S4 × Z2, respectively. © 2011 Wiley Periodicals, Inc. J Combin Designs 19:475‐483, 2011  相似文献   

17.
L. Ji 《组合设计杂志》2004,12(2):92-102
Let B3(K) = {v:? an S(3,K,v)}. For K = {4} or {4,6}, B3(K) has been determined by Hanani, and for K = {4, 5} by a previous paper of the author. In this paper, we investigate the case of K = {4,5,6}. It is easy to see that if vB3 ({4, 5, 6}), then v ≡ 0, 1, 2 (mod 4). It is known that B3{4, 6}) = {v > 0: v ≡ 0 (mod 2)} ? B3({4,5,6}) by Hanani and that B3({4, 5}) = {v > 0: v ≡ 1, 2, 4, 5, 8, 10 (mod 12) and v ≠ 13} ? B3({4, 5, 6}). We shall focus on the case of v ≡ 9 (mod 12). It is proved that B3({4,5,6}) = {v > 0: v ≡ 0, 1, 2 (mod 4) and v ≠ 9, 13}. © 2003 Wiley Periodicals, Inc.  相似文献   

18.
A (K4 ? e)‐design on v + w points embeds a P3‐design on v points if there is a subset of v points on which the K4 ? e blocks induce the blocks of a P3‐design. It is shown that w ≥ ¾(v ? 1). When equality holds, the embedding design is easily constructed. In this paper, the next case, when w = ¾v, is settled with finitely many exceptions. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 352–366, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10044  相似文献   

19.
In this paper, we investigate a generalization of graph decomposition, called hypergraph decomposition. We show that a decomposition of a 3-uniform hypergraph K(3)v into a special kind of hypergraph K(3)4 - e exists if and only if v ≡ 0, 1, 2 (mod 9) and v ≥ 9.  相似文献   

20.
ABSTRACT. In this paper we develop a micro ecosystem model whose basic entities are representative organisms which behave as if maximizing their net offspring under constraints. Net offspring is increasing in prey biomass intake, declining in the loss of own biomass to predators and Allee's law applies. The organism's constraint reflects its perception of how scarce its own biomass and the biomass of its prey is. In the short‐run periods prices (scarcity indicators) coordinate and determine all biomass transactions and net offspring which directly translates into population growth functions. We are able to explicitly determine these growth functions for a simple food web when specific parametric net offspring functions are chosen in the micro‐level ecosystem model. For the case of a single species our model is shown to yield the well‐known Verhulst‐Pearl logistic growth function. With two species in predator‐prey relationship, we derive differential equations whose dynamics are completely characterized and turn out to be similar to the predator‐prey model with Michaelis‐Menten type functional response. With two species competing for a single resource we find that coexistence is a knife‐edge feature confirming Tschirhart's [2002] result in a different but related model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号