首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, by incorporating latencies for both human beings and female mosquitoes to the mosquito‐borne diseases model, we investigate a class of multi‐group dengue disease model and study the impacts of heterogeneity and latencies on the spread of infectious disease. Dynamical properties of the multi‐group model with distributed delays are established. The results showthat the global asymptotic stability of the disease‐free equilibrium and the endemic equilibrium depends only on the basic reproduction number. Our proofs for global stability of equilibria use the classical method of Lyapunov functions and the graph‐theoretic approach for large‐scale delay systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This article considers the leader‐following consensus problem of heterogeneous multi‐agent systems. The proposed multi‐agent system is consisted of heterogeneous agents where each agents have their own nonlinear dynamic behavior. To overcome difficulty from heterogeneous nonlinear intrinsic dynamics of agents, a fuzzy disturbance observer is adopted. In addition, based on the Lyapunov stability theory, an adaptive control method is used to compensate the observation error caused by the difference between the unknown factor and estimated values. Two numerical examples are given to illustrate the effectiveness of the proposed method. © 2013 Wiley Periodicals, Inc. Complexity 19: 20–31, 2014  相似文献   

3.
In this paper, we perform global stability analysis of a multi‐group SEIR epidemic model in which we can consider the heterogeneity of host population and the effects of latency and nonlinear incidence rates. For a simpler version that assumes an identical natural death rate for all groups, and with a gamma distribution for the latency, the basic reproduction number is defined by the theory of the next generation operator and proved to be a sharp threshold determining whether or not disease spread. Under certain assumptions, the disease‐free equilibrium is globally asymptotically stable if R0≤1 and there exists a unique endemic equilibrium which is globally asymptotically stable if R0>1. The proofs of global stability of equilibria exploit a matrix‐theoretic method using Perron eigenvetor, a graph‐theoretic method based on Kirchhoff's matrix tree theorem and Lyapunov functionals. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A delayed multi‐group SVEIR epidemic model with vaccination and a general incidence function has been formulated and studied in this paper. Mathematical analysis shows that the basic reproduction number plays a key role in the dynamics of the model: the disease‐free equilibrium is globally asymptotically stable when , while the endemic equilibrium exists uniquely and is globally asymptotically stable when . For the proofs, we exploit a graph‐theoretical approach to the method of Lyapunov functionals. Our results show that distributed delay has no impact on the global stability of equilibria, and the results improve and generalize some known results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper introduces techniques based on diagonal threshold tolerance when developing multi‐elimination and multi‐level incomplete LU (ILUM) factorization preconditioners for solving general sparse linear systems. Existing heuristics solely based on the adjacency graph of the matrices have been used to find independent sets and are not robust for matrices arising from certain applications in which the matrices may have small or zero diagonals. New heuristic strategies based on the adjacency graph and the diagonal values of the matrices for finding independent sets are introduced. Analytical bounds for the factorization and preconditioned errors are obtained for the case of a two‐level analysis. These bounds provide useful information in designing robust ILUM preconditioners. Extensive numerical experiments are conducted in order to compare robustness and efficiency of various heuristic strategies. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

7.
This paper concentrates on the global synchronization of the fractional‐order multi‐linked complex network (FMCN) via periodically intermittent control. It should be stressed that periodically intermittent control is employed to the FMCN for the first time. Moreover, the network is defined on digraphs with different weights, and two situations on topological structure of the network are discussed, including each digraph being strongly connected, and the biggest one being strongly connected. Based on Lyapunov method and graph theory, some synchronization criteria are obtained under two situations. And, the obtained synchronization criteria have a close relationship with the order of fractional‐order derivative, coupling strength, control gain, control rate, and control period. Besides, for practicability, theoretical results are applied to studying the synchronization of fractional‐order multi‐linked chaotic systems, and some sufficient conditions are provided. For a special case, fractional‐order multi‐linked Lorenz chaotic systems, numerical simulations are given to indicate the feasibility of theoretical results and the effectiveness of control strategy.  相似文献   

8.
In this paper, the consensus problem of uncertain nonlinear multi‐agent systems is investigated via reliable control in the presence of probabilistic time‐varying delay. First, the communication topology among the agents is assumed to be directed and fixed. Second, by introducing a stochastic variable which satisfies Bernoulli distribution, the information of probabilistic time‐varying delay is equivalently transformed into the deterministic time‐varying delay with stochastic parameters. Third, by using Laplacian matrix properties, the consensus problem is converted into the conventional stability problem of the closed‐loop system. The main objective of this paper is to design a state feedback reliable controller such that for all admissible uncertainties as well as actuator failure cases, the resulting closed‐loop system is robustly stable in the sense of mean‐square. For this purpose, through construction of a suitable Lyapunov–Krasovskii functional containing four integral terms and utilization of Kronecker product properties along with the matrix inequality techniques, a new set of delay‐dependent consensus stabilizability conditions for the closed‐loop system is obtained. Based on these conditions, the desired reliable controller is designed in terms of linear matrix inequalities which can be easily solved by using any of the effective optimization algorithms. Moreover, a numerical example and its simulations are included to demonstrate the feasibility and effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 138–150, 2016  相似文献   

9.
A discrete multi‐group SVIR epidemic model with general nonlinear incidence rate and vaccination is investigated by utilizing Mickens' nonstandard finite difference scheme to a corresponding continuous model. Mathematical analysis shows that the global asymptotic stability of the equilibria is fully determined by the basic reproduction number by constructing Lyapunov functions. The results imply that the discretization scheme can efficiently preserves the global asymptotic stability of the equilibria for corresponding continuous model, and numerical simulations are carried out to illustrate the theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Two synchronous transmission multi‐channel multi‐access protocols for high‐speed network architecture are studied in this paper. Analytic discrete time Markovian models are developed for finite number of stations and finite number of channels for the symmetric and asymmetric access rights proposed protocols. The effect of receiver collision phenomenon is examined and analysed on the performance measures evaluation and estimated by the probability of packet rejection at destination. Also, numerical results are presented for comparison for various numbers of data channels and stations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

12.
This paper contains an overview of recent development in asymptotic analysis of fields in multi‐structures. We begin with simple examples of scalar dynamic problems in two dimensions, and then present analysis of time‐dependent fields in 1D–3D multi‐structures. The asymptotic results, presented here, are based on the method of compound asymptotic expansions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we present a method for the construction of a class of multi‐step finite differences schemes for solving arbitrary order linear two‐point boundary value problems. The construction technique is based on Padé approximant. It is easy to derive multi‐step difference schemes, and it includes many existing schemes as its special cases. Numerical experiments show that the proposed schemes are flexible and convergent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on a distributed optimization problem associated with a time‐varying multi‐agent network with quantized communication, where each agent has local access to its convex objective function, and cooperatively minimizes a sum of convex objective functions of the agents over the network. Based on subgradient methods, we propose a distributed algorithm to solve this problem under the additional constraint that agents can only communicate quantized information through the network. We consider two kinds of quantizers and analyze the quantization effects on the convergence of the algorithm. Furthermore, we provide explicit error bounds on the convergence rates that highlight the dependence on the quantization levels. Finally, some simulation results on a l1‐regression problem are presented to demonstrate the performance of the algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In this work, we present numerical analysis for nonlinear multi‐term time fractional differential equation which involve Caputo‐type fractional derivatives for . The proposed method is based on utilization of fractional B‐spline basics in collocation method. The scheme can be readily obtained efficient and quite accurate with less computational work numerical result. The proposal approach transform nonlinear multi‐term time fractional differential equation into a suitable linear system of algebraic equations which can be solved by a suitable numerical method. The numerical experiments will be verify to demonstrate the effectiveness of our method for solving one‐ and two‐dimensional multi‐term time fractional differential equation.  相似文献   

17.
In this paper, the exponential synchronization problem of delayed coupled reaction‐diffusion systems on networks (DCRDSNs) is investigated. Based on graph theory, a systematic method is designed to achieve exponential synchronization between two DCRDSNs by constructing a global Lyapunov function for error system. Two different kinds of sufficient synchronization criteria are derived in the form of Lyapunov functions and coefficients of drive‐response systems, respectively. Finally, a numerical example is given to show the usefulness of the proposed criteria. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we distinguish the concept of global invader strategy (GIS) from that of neighborhood invader strategy (NIS), and discuss the concepts and the properties of ESS, NIS and GIS and relationship among them in the scenario of multi‐player matrix game. We show that a GIS is always an ESS and GIS is unique for any multi‐player. We also show that NIS is equivalent to ESS for pairwise game and there are some results in multi‐player game different from those in pairwise game. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a new numerical algorithm is provided to solve nonlinear multi‐point boundary value problems in a very favorable reproducing kernel space, which satisfies all complex boundary conditions. Its reproducing kernel function is discussed in detail. The theorem proves that the approximate solution and its first‐ and second‐order derivatives all converge uniformly. The numerical experiments show that the algorithm is quite accurate and efficient for solving nonlinear multi‐point boundary value problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号