首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the development of an intermolecular unactivated C(sp3)–H bond functionalization towards the direct synthesis of tertiary carbamates. The transformation proceeded using a readily available, abundant first-row transition metal catalyst (copper), and isocyanates as the source of the amide moiety. This is a novel strategy for direct transformation of a variety of unactivated hydrocarbon feedstocks to N-alkyl-N-aryl and N,N-dialkyl carbamates without pre-functionalization or installation of a directing group. The reaction had a broad substrate scope with 3° > 2° > 1° site selectivity. The reaction proceeded even on a gram scale, and a corresponding free amine was directly obtained when the reaction was performed at high temperature. Kinetic studies suggested that radical-mediated C(sp3)–H bond cleavage was the rate-determining step.  相似文献   

2.
The iridium-catalyzed C(sp3)–H borylation of methylchlorosilanes is investigated by means of density functional theory, using the B3LYP and M06 functionals. The calculations establish that the resting state of the catalyst is a seven-coordinate Ir(v) species that has to be converted into an Ir(iii)tris(boryl) complex in order to effect the oxidative addition of the C–H bond. This is then followed by a C–B reductive elimination to yield the borylated product, and the catalytic cycle is finally completed by the regeneration of the active catalyst over two facile steps. The two employed functionals give somewhat different conclusions concerning the nature of the rate-determining step, and whether reductive elimination occurs directly or after a prior isomerization of the Ir(v) hydride intermediate complex. The calculations reproduce quite well the experimentally-observed trends in the reactivities of substrates with different substituents. It is demonstrated that the reactivity can be correlated to the Ir–C bond dissociation energies of the corresponding Ir(v) hydride intermediates. The effect of the chlorosilyl group is identified to originate from the α-carbanion-stabilizing effect of the silicon, which is further reinforced by the presence of an electron-withdrawing chlorine substituent. Furthermore, the source of selectivity for the borylation of primary over secondary C(sp3)–H can be explained on a steric basis, by repulsion between the alkyl group and the Ir/ligand moiety. Finally, the difference in the reactivity between C(sp3)–H and C(sp2)–H borylation is investigated and rationalized in terms of distortion/interaction analysis.  相似文献   

3.
β-Lactam derivatives are produced through intermediate donor–acceptor cyclopropene intermediates in high yield, exclusive cis-diastereoselectivity, and high enantiocontrol in a chiral dirhodium carboxylate catalyzed intramolecular C–H functionalization reaction of enoldiazoacetamides.  相似文献   

4.
A series of exTTF-(crown ether)2 receptors, designed to host C60, has been prepared. The size of the crown ether and the nature of the heteroatoms have been systematically changed to fine tune the association constants. Electrochemical measurements and transient absorption spectroscopy assisted in corroborating charge transfer in the ground state and in the excited state, leading to the formation of radical ion pairs featuring lifetimes in the range from 12 to 21 ps. To rationalize the nature of the exTTF-(crown ether)2·C60 stabilizing interactions, theoretical calculations have been carried out, suggesting a synergetic interplay of donor–acceptor, π–π, n–π and CH···π interactions, which is the basis for the affinity of our novel receptors towards C60.  相似文献   

5.
Cyclopropanone derivatives have long been considered unsustainable synthetic intermediates because of their extreme strain and kinetic instability. Reported here is the enantioselective synthesis of 1-sulfonylcyclopropanols, as stable yet powerful equivalents of the corresponding cyclopropanone derivatives, by α-hydroxylation of sulfonylcyclopropanes using a bis(silyl) peroxide as the electrophilic oxygen source. This work constitutes the first general approach to enantioenriched cyclopropanone derivatives. Both the electronic and steric nature of the sulfonyl moiety, which serves as a base-labile protecting group and confers crystallinity to these cyclopropanone precursors, were found to have a crucial impact on the rate of equilibration to the corresponding cyclopropanone. The utility of these cyclopropanone surrogates is demonstrated in a mild and stereospecific formal [3+1] cycloaddition with simple hydroxylamines, leading to the efficient formation of chiral β-lactam derivatives.  相似文献   

6.
《Tetrahedron letters》1997,38(39):6917-6920
in this paper is reported the stereoselective synthesis of all-trans-tetraenes by reductive elimination of 1,8-dibenzoate-2,4,6-trienes with sodium amalgam. The method was applied to the syntheses of 4E, 6E, 8E, 10E-heptatetraene and β—parinaric acid methyl ester.  相似文献   

7.
The palladium-catalyzed coupling of olefins and organohalides is a versatile approach for synthesizing complex molecules from simple starting materials. We have developed a palladium-catalyzed coupling of α-bromocarbonyl compounds with allylic alcohols for the generation of acyclic aryl-substituted dicarbonyl compounds. The reaction proceeds via a tandem olefin insertion of an α-acyl radical followed by a 1,2-aryl migration. In addition to providing preliminary evidence for a free radical mediated mechanism, we demonstrate unprecedented levels of 1,3-stereoinduction for the 1,2-migration step.  相似文献   

8.
We report a unified strategy for the total syntheses of (–)-psychotriasine and (+)-pestalazine B based on the advanced intermediates of 3α-amino-hexahydropyrrolo[2,3-b]indole. To construct these structural motifs, a cascade reaction involving a BINOL-derived phosphoric anion-paired catalyst for enantioselective or diastereoselective azo-coupling/iminium-cyclizations was developed. The remaining key steps of the synthesis involve a sterically hindered amination via hypervalent iodine reagents and the Larock annulation. These transformations enable a general approach to the syntheses of indole alkaloids containing a 3α-amino-hexahydropyrrolo[2,3-b]indole motif and could be further applied to build a natural product-based library.  相似文献   

9.
A highly selective arylation of a number of polyaromatic hydrocarbons (PAHs) with aryliodonium salts and Pd/C as the only reagent is reported. The first C–H functionalization of triphenylene is explored, and proceeds at the most sterically hindered position. This non-chelate assisted C–H functionalization extends the reactivity profile of Pd/C and provides controlled access to π-extended PAHs, an important aspect of work towards the preparation of nanographenes. Mechanistic studies suggest in situ formation of catalytically active insoluble nanoparticles, and that the reaction likely proceeds via a Pd(0)/Pd(ii) type reaction manifold.  相似文献   

10.
Palladium-catalyzed 1,4-difunctionalizations of isoprene that produce skipped polyenes are reported. Complex isomeric product mixtures are possible as a result of the difficult-to-control migratory insertion of isoprene into a Pd–alkenyl bond, but good site selectivity has been achieved using easily accessible pyrox ligands. Mechanistic studies suggest that the control of insertion is the result of the unique electronic asymmetry and steric properties of the ligand.  相似文献   

11.
《Tetrahedron: Asymmetry》2001,12(10):1435-1440
Three isoquinoline alkaloids, (−)-salsolidine 2, (+)-carnegine 6 and (−)-1-phenyl-2-methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 7, were obtained in high yield and with 17–46% e.e. by the enantioselective additions of organolithium reagents to dihydroisoquinolines 1 and 5, in the presence of (−)-sparteine as a chiral ligand.  相似文献   

12.
C–F activation of 2,3,5,6-tetrafluoropyridine at [Rh{Si(OEt)3}(PEt3)3] (1) yields [Rh{2-(3,5,6-C5F3HN)}(PEt3)3] (2) and FSi(OEt)3, but in an unprecedented consecutive reaction FSi(OEt)3 acts as a fluoride source to give [Rh(4-C5F4N)(PEt3)3] (4) by regeneration of the C–F bond and C–H activation. Analogous refluorination steps were observed for other 2-pyridyl rhodium complexes. NMR spectroscopic studies revealed a delicate balance between the feasibility for C–F bond formation accompanied by a C–H activation and the occurrence of competing reactions such as hydrodefluorinations induced by the intermediary presence of H2.  相似文献   

13.
We report herein an asymmetric Pictet–Spengler reaction of α-ketoesters. In the presence of a catalytic amount of simple alanine-derived squaramide and p-nitrobenzoic acid, reaction of tryptamines with methyl 2-oxoalkanoates afforded the corresponding 1-alkyl-1-methoxycarbonyl tetrahydro-β-carbolines (THBCs) in high yields and ee values. A primary kinetic isotope effect (KIE=4.5) using C2-deteurium-labelled tryptamine indicates that rearomatization through deprotonation of the pentahydro-β-carbolinium ion could be the rate- and enantioselectivity-determining step. A concise enantioselective total synthesis of (+)-alstratine A, a hexacyclic cagelike monoterpene indole alkaloid, featuring this reaction as a key step, was subsequently accomplished. Remeasurement of the [a]D value of the natural product indicates that natural alstratine A is dextrorotatory rather than levorotatory as it was initially reported in the isolation paper.  相似文献   

14.
15.
The catalytic 1,2-insertion polymerization of polar norbornenes (NBEs) leads to the formation of functional rigid macromolecules with exceptional thermal, optical and mechanical properties. However, this remarkable reaction is plagued by the low reactivity of the polar monomers, and most notably of those bearing a functional group in endo position. We have examined the polymerization mechanism of NBEs bearing one or two CO2Me groups either in exo or endo position catalyzed by the so-called naked allyl Pd+ SbF6 catalyst (1). Although endo dimethyl ester of 5-norbornene-2,3-dicarboxylic acid (NBE(CO2Me)2) is polymerized by 1, two endo units are never inserted consecutively along the polymer chain. Indeed, 1 is a tandem catalyst which not only catalyzes the insertion of the monomer but also the isomerization of endo and exo isomers. Thus, the polymerization of endo monomers proceeds via a novel mechanism, coined rectification–insertion mechanism, whereby half of the endo monomers are rectified into exo ones prior insertion, leading to the formation of an alternating endoexo copolymer using an endo only feedstock. With this mechanism, the lack of reactivity of endo norbornenes is bypassed, and the polymerization of predominantly endo polar NBEs bearing a variety of functionalities such as esters, imides, acids, aldehydes, alcohols, anhydrides, or alkyl bromides proceeds with catalyst loadings as low as 0.002 mol%.  相似文献   

16.
A practical and efficient three-step sequence for the deamination of α-aminoesters is reported. This method is based on the NaBH4-mediated selective reduction of α-diazoesters to α-hydrazonoesters and has been successfully applied to the deamination of several representative α-aminoesters including some l-cysteine ethyl ester derivatives, key intermediates in the synthesis of a series of CysLT1 antagonists.  相似文献   

17.
Herein we describe for the first time the enantioselective catalytic arylation of ethyl glyoxalate using phenylboron reagents and chiral rhodium(I)–NHC catalysts. KOtBu was the base of choice, along with tert-amyl alcohol as the solvent. A novel chiral bis-imidazolium salt was synthesized and evaluated for the first time in this catalytic transformation. Although moderate enantioselectivities (up to 34% ee) were obtained for the phenylation reaction, despite the excellent yields, very low enantioselectivities were obtained using other arylboronic acids with a variety of chiral rhodium(I)–NHC catalysts.  相似文献   

18.
The systematic investigation of substrate-bound α-amino acid auxiliaries has resulted in catalytic asymmetric C–H functionalization of cyclopropanes enabled by amino acid amides as chiral bidentate directing groups. The use of an Ile-NH2 auxiliary embedded in the substrate provided excellent levels of asymmetric induction (diastereomeric ratio of up to 72 : 1) in the Pd(ii)-catalyzed β-methylene C(sp3)–H bond activation of cyclopropanes and cross-coupling with aryl iodides.  相似文献   

19.
20.
Heptamethine cyanines are favorable for fluorescence imaging applications in biological systems owing to their near-infrared (NIR) absorption and emission. However, it is very difficult to quench the fluorescence of NIR dyes by the classic photoinduced electron transfer mechanism due to their relatively high-lying occupied molecular orbital energy levels. Herein, we present a simple and effective “capping” approach to readily tune the fluorescence of NIR cyanines. The resulting new functional NIR CyBX (X = O, N, or S) dyes not only retain the intact tricarbocyanine scaffold, but also have a built-in switch to regulate the fluorescence by spiro-cyclization. When compared to traditional cyanines, novel CyBX dyes have a superior character in that their NIR optical properties can be readily tuned by the intrinsic spiro-cyclization mechanism. We expect that this “capping” strategy can be extended across not only the visual spectrum but also to structurally distinct fluorophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号