首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA nanotubes provide a programmable architecture for molecular self-assembly and can serve as model systems for one-dimensional biomolecular assemblies. While a variety of DNA nanotubes have been synthesized and employed as models for natural biopolymers, an extensive investigation of DNA nanotube kinetics and thermodynamics has been lacking. Using total internal reflection microscopy, DNA nanotube polymerization was monitored in real time at the single filament level over a wide range of free monomer concentrations and temperatures. The measured polymerization rates were subjected to a global nonlinear fit based on polymerization theory in order to simultaneously extract kinetic and thermodynamic parameters. For the DNA nanotubes used in this study, the association rate constant is (5.99 ± 0.15) × 105 M–1 s–1, the enthalpy is 87.9 ± 2.0 kcal mol–1, and the entropy is 0.252 ± 0.006 kcal mol–1 K–1. The qualitative and quantitative similarities between the kinetics of DNA nanotubes, actin filaments, and microtubules polymerization highlight the prospect of building complex dynamic systems from DNA molecules inspired by biological architecture.  相似文献   

2.
We investigate the mechanism of disulfide bond cleavage in gaseous peptide and protein ions initiated by a covalently-attached regiospecific acetyl radical using mass spectrometry (MS). Highly selective S–S bond cleavages with some minor C–S bond cleavages are observed by a single step of collisional activation. We show that even multiple disulfide bonds in intact bovine insulin are fragmented in the MS2 stage, releasing the A- and B-chains with a high yield, which has been challenging to achieve by other ion activation methods. Yet, regardless of the previous reaction mechanism studies, it has remained unclear why (1) disulfide bond cleavage is preferred to peptide backbone fragmentation, and why (2) the S–S bond that requires the higher activation energy conjectured in previously suggested mechanisms is more prone to be cleaved than the C–S bond by hydrogen-deficient radicals. To probe the mechanism of these processes, model peptides possessing deuterated β-carbon(s) at the disulfide bond are employed. It is suggested that the favored pathway of S–S bond cleavage is triggered by direct acetyl radical attack at sulfur with concomitant cleavage of the S–S bond (SH2). The activation energy for this process is substantially lower by ∼9–10 kcal mol–1 than those of peptide backbone cleavage processes determined by density functional quantum chemical calculations. Minor reaction pathways are initiated by hydrogen abstraction from the α-carbon or the β-carbon of a disulfide, followed by β-cleavages yielding C–S or S–S bond scissions. The current mechanistic findings should be generally applicable to other radical-driven disulfide bond cleavages with different radical species such as the benzyl and methyl pyridyl radicals.  相似文献   

3.
A diimine ligand having two [2.2]paracyclophanyl substituents at the N atoms (L1) was prepared from the reaction of amino[2.2]paracyclophane with acenaphtenequinone. The ligand reacts with NiBr2(dme) (dme: 1,2-dimethoxyethane) to form the dibromonickel complex with (R,R) and (S,S) configuration, NiBr2(L1). The structure of the complex was confirmed by X-ray crystallography. NiBr2(L1) catalyzes oligomerization of ethylene in the presence of methylaluminoxane (MAO) co-catalyst at 10–50 °C to form a mixture of 1- and 2-butenes after 3 h. The reactions for 6 h and 8 h at 25 °C causes further increase of 2-butene formed via isomerization of 1-butene and formation of hexenes. Reaction of 1-hexene catalyzed by NiBr2(L1)–MAO produces 2-hexene via isomerization and C12 and C18 hydrocarbons via oligomerization. Consumption of 1-hexene of the reaction obeys first-order kinetics. The kinetic parameters were obtained to be ΔG = 93.6 kJ mol−1, ΔH = 63.0 kJ mol−1, and ΔS = −112 J mol−1deg−1. NiBr2(L1) catalyzes co-dimerization of ethylene and 1-hexene to form C8 hydrocarbons with higher rate and selectivity than the tetramerization of ethylene.  相似文献   

4.
As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of K dimer > 1013 M–1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (–49.77 kcal mol–1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. The persistent tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.  相似文献   

5.
Density functional theory calculations were performed to elucidate the mechanism of the ruthenium-catalyzed hydroamidation of terminal alkynes, a powerful and sustainable method for the stereoselective synthesis of enamides. The results provide an explanation for the puzzling experimental finding that with tri-n-butylphosphine (P(Bu)3) as the ligand, the E-configured enamides are obtained, whereas the stereoselectivity is inverted in favor of the Z-configured enamides with (dicyclohexylphosphino)methane (dcypm) ligands. Using the addition of pyrrolidinone to 1-hexyne as a model reaction, various pathways were investigated, among which a catalytic cycle turned out to be most advantageous for both ligand systems that consists of: (a) oxidative addition, (b) alkyne coordination, (c) alkyne insertion (d) vinyl-vinylidene rearrangement, (e) nucleophilic transfer and finally (f) reductive elimination. The stereoselectivity of the reaction is decided in the nucleophilic transfer step. For the P(nBu)3 ligand, the butyl moiety is oriented anti to the incoming 2-pyrolidinyl unit during the nucleophilic transfer step, whereas for the dcypm ligand, steric repulsion between the butyl and cyclohexyl groups turns it into a syn orientation. Overall, the formation of E-configured product is favorable by 4.8 kcal mol–1 GSDL) for the catalytic cycle computed with P(Bu)3 as ancillary ligand, whereas for the catalytic cycle computed with dcypm ligands, the Z-product is favored by 7.0 kcal mol–1 GSDL). These calculations are in excellent agreement with experimental findings.  相似文献   

6.
It has been confirmed by 1H and 13C NMR spectroscopies that Sn(σ-C7H7)Ph3 undergoes either 1,4- or 1,5-shifts of the SnPh3 moiety around the cycloheptatrienyl ring with ΔH3 = 13.8 ± 0.4 kcal mol?1, ΔS3 = ?5.6 ± 1.2 cal mol?1 deg?1, and ΔG3300 = 15.44 ± 0.14 kcal mol?1. Similarly, (σ-5-cyclohepta-1,3-dienyl)triphenyltin undergoes 1,5-shifts with ΔH3 = 12.4 ± 0.6 kcal mol?1, ΔS3 = ?11.2 ± 1.8 cal mol?1 deg?1, and ΔG3300 = 15.76 ± 0.13 kcal mol?1. It is therefore probable that Sn(σ-5-C5H5)R3 and Sn(σ-3-indenyl)R3 do not undergo 1,2-shifts as previously suggested but really undergo 1,5-shifts.  相似文献   

7.
During a phytochemical investigation of the unripe fruits of Rubus chingii Hu (i.e., Fructus Rubi, a traditional Chinese medicine named “Fu-Pen-Zi”), a number of highly oxygenated terpenoids were isolated and characterized. These included nine ursane-type (1, 2, and 4–10), five oleanane-type (3, 11–14), and six cucurbitane-type (15–20) triterpenoids, together with five ent-kaurane-type diterpenoids (21–25). Among them, (4R,5R,8R,9R,10R,14S,17S,18S,19R,20R)-2,19α,23-trihydroxy-3-oxo-urs-1,12-dien-28-oic acid (rubusacid A, 1), (2R*,4S*,5R*,8R*,9R*,10R*,14S*,17S*, 18S*,19R*,20R*)-2α,19α,24-trihydroxy-3-oxo-urs-12-en-28-oic acid (rubusacid B, 2), (5R,8R,9R,10R, 14S,17R,18S,19S)-2,19α-dihydroxy-olean-1,12-dien-28-oic acid (rubusacid C, 3), and (3S,5S,8S,9R, 10S,13R,16R)-3α,16α,17-trihydroxy-ent-kaur-2-one (rubusone, 21) were previously undescribed. Their chemical structures and absolute configurations were elucidated on the basis of spectroscopic data and electronic circular dichroism (ECD) analyses. Compounds 1 and 3 are rare naturally occurring pentacyclic triterpenoids featuring a special α,β-unsaturated keto-enol (diosphenol) unit in ring A. Cucurbitacin B (15), cucurbitacin D (16), and 3α,16α,20(R),25-tetrahydroxy-cucurbita-5,23- dien-2,11,22-trione (17) were found to have remarkable inhibitory effects against NF-κB, with IC50 values of 0.08, 0.61, and 1.60 μM, respectively.  相似文献   

8.
As an alternative to Darwinian evolution relying on catalytic promiscuity, a protein may acquire auxiliary function upon metal binding, thus providing it with a novel catalytic machinery. Here we show that addition of cupric ions to a 6-phosphogluconolactonase 6-PGLac bearing a putative metal binding site leads to the emergence of peroxidase activity (kcat 7.8 × 10–2 s–1, KM 1.1 × 10–5 M). Both X-ray crystallographic and EPR data of the copper-loaded enzyme Cu·6-PGLac reveal a bis-histidine coordination site, located within a shallow binding pocket capable of accommodating the o-dianisidine substrate.  相似文献   

9.
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the “COVID-19” disease that has been declared by WHO as a global emergency. The pandemic, which emerged in China and widespread all over the world, has no specific treatment till now. The reported antiviral activities of isoflavonoids encouraged us to find out its in silico anti-SARS-CoV-2 activity. In this work, molecular docking studies were carried out to investigate the interaction of fifty-nine isoflavonoids against hACE2 and viral Mpro. Several other in silico studies including physicochemical properties, ADMET and toxicity have been preceded. The results revealed that the examined isoflavonoids bound perfectly the hACE-2 with free binding energies ranging from −24.02 to −39.33 kcal mol−1, compared to the co-crystallized ligand (−21.39 kcal mol–1). Furthermore, such compounds bound the Mpro with unique binding modes showing free binding energies ranging from −32.19 to −50.79 kcal mol–1, comparing to the co-crystallized ligand (binding energy = −62.84 kcal mol–1). Compounds 33 and 56 showed the most acceptable affinities against hACE2. Compounds 30 and 53 showed the best docking results against Mpro. In silico ADMET studies suggest that most compounds possess drug-likeness properties.  相似文献   

10.
The synthesis and carbohydrate-recognition properties of a new family of optically active cyclophane receptors, 1 – 3 , in which three 1,1′-binaphthalene-2,2′-diol spacers are interconnected by three buta-1,3-diynediyl linkers, are described. The macrocycles all contain highly preorganized cavities lined with six convergent OH groups for H-bonding and complementary in size and shape to monosaccharides. Compounds 1 – 3 differ by the functionality attached to the major groove of the 1,1′-binaphthalene-2,2′-diol spacers. The major grooves of the spacers in 2 are unsubstituted, whereas those in 1 bear benzyloxy (BnO) groups in the 7,7′-positions and those in 3 2-phenylethyl groups in the 6,6′-positions. The preparation of the more planar, D3-symmetrical receptors (R,R,R)- 1 (Schemes 1 and 2), (S,S,S)- 1 (Scheme 4), (S,S,S)- 2 (Scheme 5), and (S,S,S)- 3 (Scheme 8) involved as key step the Glaser-Hay cyclotrimerization of the corresponding OH-protected 3,3′-diethynyl-1,1′-binaphthalene-2,2′-diol precursors, which yielded tetrameric and pentameric macrocycles in addition to the desired trimeric compounds. The synthesis of the less planar, C2-symmetrical receptors (R,R,S)- 2 (Scheme 6) and (S,S,R)- 3 (Scheme 9) proceeded via two Glaser-Hay coupling steps. First, two monomeric precursors of identical configuration were oxidatively coupled to give a dimeric intermediate which was then subjected to macrocyclization with a third monomeric 1,1′-binaphthalene precursor of opposite configuration. The 3,3′-dialkynylation of the OH-protected 1,1′-binaphthalene-2,2′-diol precursors for the macrocyclizations was either performed by Stille (Scheme 1) or by Sonogashira (Schemes 4, 5, and 8) cross-coupling reactions. The flat D3-symmetrical receptors (R,R,R)- 1 and (S,S,S)- 1 formed 1 : 1 cavity inclusion complexes with octyl 1-O-pyranosides in CDCl3 (300 K) with moderate stability (ΔG0 ca. −3 kcal mol−1) as well as moderate diastereo- (Δ(ΔG0) up to 0.7 kcal mol−1) and enantioselectivity (Δ(ΔG0)=0.4 kcal mol−1) (Table 1). Stoichiometric 1 : 1 complexation by (S,S,S)- 2 and (S,S,S)- 3 could not be investigated by 1H-NMR binding titrations, due to very strong signal broadening. This broadening of the 1H-NMR resonances is presumably indicative of higher-order associations, in which the planar macrocycles sandwich the carbohydrate guests. The less planar C2-symmetrical receptor (S,S,R)- 3 formed stable 1 : 1 complexes with binding free enthalpies of up to ΔG0=−5.0 kcal mol−1 (Table 2). With diastereoselectivities up to Δ(ΔG0)=1.3 kcal mol−1 and enantioselectivities of Δ(ΔG0)=0.9 kcal mol−1, (S,S,R)- 3 is among the most selective artificial carbohydrate receptors known.  相似文献   

11.
Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5–ligand complexes. Four bioactive molecules (Bufadienolide (−12.30 kcal mol−1), Stigmasterol (−11.40 kcal mol−1), Isovitexin (−11.20 kcal mol−1), and Apigetrin (−11.20 kcal mol−1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (−9.80 kcal mol−1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.  相似文献   

12.
Non-catalysed and catalysed reactions of aluminium reagents with furans, dihydrofurans and dihydropyrans were investigated and lead to ring-expanded products due to the insertion of the aluminium reagent into a C–O bond of the heterocycle. Specifically, the reaction of [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl, 1) with furans proceeded between 25 and 80 °C leading to dearomatised products due to the net transformation of a sp2 C–O bond into a sp2 C–Al bond. The kinetics of the reaction of 1 with furan were found to be 1st order with respect to 1 with activation parameters ΔH = +19.7 (±2.7) kcal mol−1, ΔS = −18.8 (±7.8) cal K−1 mol−1 and ΔG298 K = +25.3 (±0.5) kcal mol−1 and a KIE of 1.0 ± 0.1. DFT calculations support a stepwise mechanism involving an initial (4 + 1) cycloaddition of 1 with furan to form a bicyclic intermediate that rearranges by an α-migration. The selectivity of ring-expansion is influenced by factors that weaken the sp2 C–O bond through population of the σ*-orbital. Inclusion of [Pd(PCy3)2] as a catalyst in these reactions results in expansion of the substrate scope to include 2,3-dihydrofurans and 3,4-dihydropyrans and improves selectivity. Under catalysed conditions, the C–O bond that breaks is that adjacent to the sp2C–H bond. The aluminium(iii) dihydride reagent [{(MesNCMe)2CH}AlH2] (Mes = 2,4,6-trimethylphenyl, 2) can also be used under catalytic conditions to effect a dehydrogenative ring-expansion of furans. Further mechanistic analysis shows that C–O bond functionalisation occurs via an initial C–H bond alumination. Kinetic products can be isolated that are derived from installation of the aluminium reagent at the 2-position of the heterocycle. C–H alumination occurs with a KIE of 4.8 ± 0.3 consistent with a turnover limiting step involving oxidative addition of the C–H bond to the palladium catalyst. Isomerisation of the kinetic C–H aluminated product to the thermodynamic C–O ring expansion product is an intramolecular process that is again catalysed by [Pd(PCy3)2]. DFT calculations suggest that the key C–O bond breaking step involves attack of an aluminium based metalloligand on the 2-palladated heterocycle. The new methodology has been applied to important platform chemicals from biomass.

Non-catalysed and catalysed reactions of aluminium reagents with furans, dihydrofurans and dihydropyrans were investigated and lead to ring-expanded products due to the insertion of the aluminium reagent into a C–O bond of the heterocycle.  相似文献   

13.
Tyrosinases belong to the functional copper-containing proteins family, and their structure contains two copper atoms, in the active site, which are coordinated by three histidine residues. The biosynthesis of melanin in melanocytes has two stages depending on the actions of the natural substrates L-DOPA and L-tyrosine. The dysregulation of tyrosinase is involved in skin cancer initiation. In the present study, using molecular modeling tools, we analyzed the inhibition activity of tyrosinase activity using kojic acid (KA) derivatives designed from aromatic aldehydes and malononitrile. All derivatives showed conformational affinity to the enzyme active site, and a favorable distance to chelate the copper ion, which is essential for enzyme function. Molecular dynamics simulations revealed that the derivatives formed promising complexes, presenting stable conformations with deviations between 0.2 and 0.35 Å. In addition, the investigated KA derivatives showed favorable binding free energies. The most stable KA derivatives showed the following binding free energies: −17.65 kcal mol−1 (D6), −18.07 kcal mol−1 (D2), −18.13 (D5) kcal mol−1, and −10.31 kcal mol−1 (D4). Our results suggest that these derivatives could be potent competitive inhibitors of the natural substrates of L-DOPA (−12.84 kcal mol−1) and L-tyrosine (−9.04 kcal mol−1) in melanogenesis.  相似文献   

14.
Cooperative dual site activation of boranes by redox-active 1,3-N,S-chelated ruthenium species, mer-[PR32-N,S-(L)}2Ru{κ1-S-(L)}], (mer-2a: R = Cy, mer-2b: R = Ph; L = NC7H4S2), generated from the aerial oxidation of borate complexes, [PR32-N,S-(L)}Ru{κ3-H,S,S′-BH2(L)2}] (transmer-1a: R = Cy, transmer-1b: R = Ph; L = NC7H4S2), has been investigated. Utilizing the rich electronic behaviour of these 1,3-N,S-chelated ruthenium species, we have established that a combination of redox-active ligands and metal–ligand cooperativity has a big influence on the multisite borane activation. For example, treatment of mer-2a–b with BH3·THF led to the isolation of fac-[PR3Ru{κ3-H,S,S′-(NH2BSBH2N)(S2C7H4)2}] (fac-3a: R = Cy and fac-3b: R = Ph) that captured boranes at both sites of the κ2-N,S-chelated ruthenacycles. The core structure of fac-3a and fac-3b consists of two five-membered ruthenacycles [RuBNCS] which are fused by one butterfly moiety [RuB2S]. Analogous fac-3c, [PPh3Ru{κ3-H,S,S′-(NH2BSBH2N)(SC5H4)2}], can also be synthesized from the reaction of BH3·THF with [PPh32-N,S-(SNC5H4)}{κ3-H,S,S′-BH2(SNH4C5)2}Ru], cisfac-1c. In stark contrast, when mer-2b was treated with BH2Mes (Mes = 2,4,6-trimethyl phenyl) it led to the formation of trans- and cis-bis(dihydroborate) complexes [{κ3-S,H,H-(NH2BMes)Ru(S2C7H4)}2], (trans-4 and cis-4). Both the complexes have two five-membered [Ru–(H)2–B–NCS] ruthenacycles with κ2-H–H coordination modes. Density functional theory (DFT) calculations suggest that the activation of boranes across the dual Ru–N site is more facile than the Ru–S one.

Redox-active ruthenium complexes supported by hemilabile κ2-N,S-chelated ruthenacycles undergo unusual dual site B–H bond activation through metal–ligand cooperation with free and bulky boranes.  相似文献   

15.
Stereochemical nonrigidity of the hexacoordinated (O—Ge)-chelate bis(2-oxo-1-hexahydroazepinylmethyl)dichlorogermane in CDCl3 was studied by dynamic NMR. The activation parameters of the intramolecular rearrangement at the coordination center are G # 298 = 12.3±0.2 kcal mol–1, H # = 16.9±0.2 kcal mol–1, and S # = 15.3±0.7 cal mol–1 K–1. The dissociative mechanism of ligand exchange involving the cleavage of the OGe coordination bond is discussed based on the positive entropy of activation.  相似文献   

16.
The extensive use of sulfonamides seriously threatens the safety and stability of the ecological environment. Developing green inexpensive and effective adsorbents is critically needed for the elimination of sulfonamides from wastewater. The non-modified biochar exhibited limited adsorption capacity for sulfonamides. In this study, the attapulgite-doped biochar adsorbent (ATP/BC) was produced from attapulgite and rice straw by calcination. Compared with non-modified biochar, the specific surface area of ATP/BC increased by 73.53–131.26%, and the average pore width of ATP/BC decreased 1.77–3.60 nm. The removal rates of sulfadiazine and sulfamethazine by ATP/BC were 98.63% and 98.24%, respectively, at the mass ratio of ATP to rice straw = 1:10, time = 4 h, dosage = 2 g∙L−1, pH = 5, initial concentration = 1 mg∙L−1, and temperature = 20 °C. A pseudo-second-order kinetic model (R2 = 0.99) and the Freundlich isothermal model (R2 = 0.99) well described the process of sulfonamide adsorption on ATP/BC. Thermodynamic calculations showed that the adsorption behavior of sulfonamides on the ATP/BC was an endothermic (ΔH > 0), random (ΔS > 0), spontaneous reaction (ΔG < 0) that was dominated by chemisorption (−20 kJ∙mol−1 > ΔG). The potential adsorption mechanisms include electrostatic interaction, hydrogen bonding, π–π interaction, and Lewis acid–base interactions. This study provides an optional material to treat sulfonamides in wastewater and groundwater.  相似文献   

17.
How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer–Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF3·Et2O/H2O2 system. Although the primary effect (alignment of the migrating C–Rm bond with the breaking O–O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C–Rm bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol−1 Curtin–Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2–3 kcal mol−1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph3P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI – a ring-opening process.

Protecting stereoelectronic effects prevent Baeyer–Villiger rearrangement and stabilize γ-OX-γ-peroxylactones (X = H, OH), the previously elusive non-strained Criegee intermediates.  相似文献   

18.
Reactions of the cyclo-E5 sandwich complexes [Cp*Fe(η5-P5)] (1) and [Cp*Fe(η5-As5)] (2) with the planar Lewis acid trimeric (perfluoro-ortho-phenylene)mercury [(o-C6F4Hg)3] (3) afford compounds that show distinctly different assemblies in the solid state. The phosphorus containing ligand 1 forms dimeric coordination units with two molecules of 3, with one P atom of each cyclo-P5 ligand positioned in close proximity to the center of a molecule of 3. In contrast to the coordination behavior of 1, the arsenic analog 2 shows simultaneous interaction of three As atoms with the Hg atoms of 3. A DFT study and subsequent AIM analyses of the products suggest that electrostatic forces are prevalent over donor–acceptor interactions in these adducts, and may play a role in the differences in the observed coordination behavior. Subsequently, a series of [CpRFe(η5-P5)] (CpR = C5H5–n tBun, n = 1–3, 6a–c) sandwich complexes was prepared and also reacted with [(o-C6F4Hg)3]. In the solid state the obtained products 7a–c with increasing steric demand of the CpR ligands show no significant change in their assembly compared to the Cp* analog 4. All of the products were characterized by single crystal X-ray structure analysis, mass spectrometry and elemental analysis as well as NMR spectroscopy and IR spectrometry.  相似文献   

19.
The kinetics of the mercuration of 2-methylazobenzene in methanol were studied. The thermodynamic data found were ?Eact = 22.7 kcal mol?1, ?H1 = 22.0 kcal mol?1, and ?S1 = ?12.3 eu. In comparison with a value of ?S1 ? ?20 eu for the mercuration of benzene, this lowered entropy is taken as evidence for complex formation between mercuric acetate and 2-methylazobenzene before and during the rate determining step of electrophilic substitution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号