共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a catalytic asymmetric total synthesis of the ascidian natural product perophoramidine. The synthesis employs a molybdenum-catalyzed asymmetric allylic alkylation of an oxindole nucleophile and a monosubstituted allylic electrophile as a key asymmetric step. The enantioenriched oxindole product from this transformation contains vicinal quaternary and tertiary stereocenters, and is obtained in high yield along with high levels of regio-, diastereo-, and enantioselectivity. To install the second quaternary stereocenter in the target, the route utilizes a novel regio- and diastereoselective allylation of a cyclic imino ether to deliver an allylated imino ether product in near quantitative yield and with complete regio- and diastereocontrol. Oxidative cleavage and reductive amination are used as final steps to access the natural product. 相似文献
2.
We describe the development of an intermolecular unactivated C(sp3)–H bond functionalization towards the direct synthesis of tertiary carbamates. The transformation proceeded using a readily available, abundant first-row transition metal catalyst (copper), and isocyanates as the source of the amide moiety. This is a novel strategy for direct transformation of a variety of unactivated hydrocarbon feedstocks to N-alkyl-N-aryl and N,N-dialkyl carbamates without pre-functionalization or installation of a directing group. The reaction had a broad substrate scope with 3° > 2° > 1° site selectivity. The reaction proceeded even on a gram scale, and a corresponding free amine was directly obtained when the reaction was performed at high temperature. Kinetic studies suggested that radical-mediated C(sp3)–H bond cleavage was the rate-determining step. 相似文献
3.
Luis Moreira Joaquín Calbo Rafael M. Krick Calderon José Santos Beatriz M. Illescas Juan Aragó Jean-Fran?ois Nierengarten Dirk M. Guldi Enrique Ortí Nazario Martín 《Chemical science》2015,6(8):4426-4432
A series of exTTF-(crown ether)2 receptors, designed to host C60, has been prepared. The size of the crown ether and the nature of the heteroatoms have been systematically changed to fine tune the association constants. Electrochemical measurements and transient absorption spectroscopy assisted in corroborating charge transfer in the ground state and in the excited state, leading to the formation of radical ion pairs featuring lifetimes in the range from 12 to 21 ps. To rationalize the nature of the exTTF-(crown ether)2·C60 stabilizing interactions, theoretical calculations have been carried out, suggesting a synergetic interplay of donor–acceptor, π–π, n–π and CH···π interactions, which is the basis for the affinity of our novel receptors towards C60. 相似文献
4.
P. R. Symmers M. J. Burke D. P. August P. I. T. Thomson G. S. Nichol M. R. Warren C. J. Campbell P. J. Lusby 《Chemical science》2015,6(1):756-760
Cobalt(iii) tetrahedral capsules have been prepared using an assembly-followed-by-oxidation protocol from a cobalt(ii) precursor and a readily derivatizable pyridyl-triazole ligand system. Experiments designed to probe the constitutional dynamics show that these architectures are in a non-equilibrium state. A preliminary investigation into the host–guest chemistry of a water-soluble derivative shows it can bind and differentiate a range of different neutral organic molecules. The stability of this ensemble also permits the study of guest-binding at high salt concentrations. 相似文献
5.
The first nickel catalyzed deprotonative cross coupling between C(sp3)–H bonds and aryl chlorides is reported, allowing the challenging arylation of benzylimines in the absence of directing group or stoichiometric metal activation. This methodology represents a convenient access to the (diarylmethyl)amine moiety, which is widespread in pharmaceutically relevant compounds. 相似文献
6.
C–F activation of 2,3,5,6-tetrafluoropyridine at [Rh{Si(OEt)3}(PEt3)3] (1) yields [Rh{2-(3,5,6-C5F3HN)}(PEt3)3] (2) and FSi(OEt)3, but in an unprecedented consecutive reaction FSi(OEt)3 acts as a fluoride source to give [Rh(4-C5F4N)(PEt3)3] (4) by regeneration of the C–F bond and C–H activation. Analogous refluorination steps were observed for other 2-pyridyl rhodium complexes. NMR spectroscopic studies revealed a delicate balance between the feasibility for C–F bond formation accompanied by a C–H activation and the occurrence of competing reactions such as hydrodefluorinations induced by the intermediary presence of H2. 相似文献
7.
Hai-Jing Zhong Lihua Lu Ka-Ho Leung Catherine C. L. Wong Chao Peng Siu-Cheong Yan Dik-Lung Ma Zongwei Cai Hui-Min David Wang Chung-Hang Leung 《Chemical science》2015,6(10):5400-5408
Bromodomain-containing protein 4 (BRD4) has recently emerged as an attractive epigenetic target for anticancer therapy. In this study, an iridium(iii) complex is reported as the first metal-based, irreversible inhibitor of BRD4. Complex 1a is able to antagonize the BRD4-acetylated histone protein–protein interaction (PPI) in vitro, and to bind BRD4 and down-regulate c-myc oncogenic expression in cellulo. Chromatin immunoprecipitation (ChIP) analysis revealed that 1a could modulate the interaction between BRD4 and chromatin in melanoma cells, particular at the MYC promoter. Finally, the complex showed potent activity against melanoma xenografts in an in vivo mouse model. To our knowledge, this is the first report of a Group 9 metal complex inhibiting the PPI of a member of the bromodomain and extraterminal domain (BET) family. We envision that complex 1a may serve as a useful scaffold for the development of more potent epigenetic agents against cancers such as melanoma. 相似文献
8.
Jeffrey S. Bandar Alexandre Barthelme Alon Y. Mazori Tristan H. Lambert 《Chemical science》2015,6(2):1537-1547
We recently demonstrated that chiral cyclopropenimines are viable Brønsted base catalysts in enantioselective Michael and Mannich reactions. Herein, we describe a series of structure–activity relationship studies that provide an enhanced understanding of the effectiveness of certain cyclopropenimines as enantioselective Brønsted base catalysts. These studies underscore the crucial importance of dicyclohexylamino substituents in mediating both reaction rate and enantioselectivity. In addition, an unusual catalyst CH···O interaction, which provides both ground state and transition state organization, is discussed. Cyclopropenimine stability studies have led to the identification of new catalysts with greatly improved stability. Finally, additional demonstrations of substrate scope and current limitations are provided herein. 相似文献
9.
The catalytic 1,2-insertion polymerization of polar norbornenes (NBEs) leads to the formation of functional rigid macromolecules with exceptional thermal, optical and mechanical properties. However, this remarkable reaction is plagued by the low reactivity of the polar monomers, and most notably of those bearing a functional group in endo position. We have examined the polymerization mechanism of NBEs bearing one or two CO2Me groups either in exo or endo position catalyzed by the so-called naked allyl Pd+ SbF6– catalyst (1). Although endo dimethyl ester of 5-norbornene-2,3-dicarboxylic acid (NBE(CO2Me)2) is polymerized by 1, two endo units are never inserted consecutively along the polymer chain. Indeed, 1 is a tandem catalyst which not only catalyzes the insertion of the monomer but also the isomerization of endo and exo isomers. Thus, the polymerization of endo monomers proceeds via a novel mechanism, coined rectification–insertion mechanism, whereby half of the endo monomers are rectified into exo ones prior insertion, leading to the formation of an alternating endo–exo copolymer using an endo only feedstock. With this mechanism, the lack of reactivity of endo norbornenes is bypassed, and the polymerization of predominantly endo polar NBEs bearing a variety of functionalities such as esters, imides, acids, aldehydes, alcohols, anhydrides, or alkyl bromides proceeds with catalyst loadings as low as 0.002 mol%. 相似文献
10.
A galvanic replacement strategy has been successfully adopted to design AgxAu1–x@CeO2 core@shell nanospheres derived from Ag@CeO2 ones. After etching using HAuCl4, the Ag core was in situ replaced with AgxAu1–x alloy nanoframes, and void spaces were left under the CeO2 shell. Among the as-prepared AgxAu1–x@CeO2 catalysts, Ag0.64Au0.36@CeO2 shows the optimal catalytic performance, whose catalytic efficiency reaches even 2.5 times higher than our previously reported Pt@CeO2 nanospheres in the catalytic reduction of 4-nitrophenol (4-NP) by ammonia borane (AB). Besides, Ag0.64Au0.36@CeO2 also exhibits a much lower 100% conversion temperature of 120 °C for catalytic CO oxidation compared with the other samples. 相似文献
11.
Cristina Hermosa Benjamin R. Horrocks José I. Martínez Fabiola Liscio Julio Gómez-Herrero Félix Zamora 《Chemical science》2015,6(4):2553-2558
The isolation of 2D-materials is already a success for graphene, graphene oxide, boron nitride and a few clays or metal chalcogenides, however despite the fact that some of them show very interesting physical properties, they lack useful functionalities. Metal–Organic Frameworks (MOFs) are multifunctional materials showing a wide range of physical and chemical properties that can be structurally designed by suitable selection of their building-blocks. This strategy may allow the production of layers with a variety of useful electronic and molecular recognition functionalities. Herein we isolate 2D-MOF flakes with areas of hundreds of square microns and an excellent control of the molecular thickness (from single up to ca. 50 layers). The samples exhibit such good photoluminescence and mechanical properties as to allow free-standing characterization of few layers’ flakes. 相似文献
12.
The catalytic activity and durability are crucial for the development of high-performance electrocatalysts. To design electrocatalysts with excellent electroactivity and durability, the structure and composition are two important guiding principles. In this work, novel Pt/Ni(OH)2–NiOOH/Pd multi-walled hollow nanorod arrays (MHNRAs) are successfully synthesized. The unique MHNRAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Because of the special surface and synergistic effects, the Pt/Ni(OH)2–NiOOH/Pd MHNRA electrocatalysts exhibit high catalytic activity, high durability and superior CO poisoning tolerance for the electrooxidation of formic acid in comparison with Pt@Pd MHNRAs, commercial Pt/C, Pd/C and PtRu/C catalysts. 相似文献
13.
A system consisting of a [NiFeSe]–hydrogenase (H2ase) grafted on the surface of a TiO2 nanoparticle modified with polyheptazine carbon nitride polymer, melon (CNx) is reported. This semi-biological assembly shows a turnover number (TON) of more than 5.8 × 105 mol H2 (mol H2ase)–1 after 72 h in a sacrificial electron donor solution at pH 6 during solar AM 1.5 G irradiation. An external quantum efficiency up to 4.8% for photon-to-hydrogen conversion was achieved under irradiation with monochromatic light. The CNx–TiO2–H2ase construct was also active under UV-free solar light irradiation (λ > 420 nm), where it showed a substantially higher activity than TiO2–H2ase and CNx–H2ase due, in part, to the formation of a CNx–TiO2 charge transfer complex and highly productive electron transfer to the H2ase. The CNx–TiO2–H2ase system sets a new benchmark for photocatalytic H2 production with a H2ase immobilised on a noble- and toxic-metal free light absorber in terms of visible light utilisation and stability. 相似文献
14.
Qian Wu Chenglong Du Yumin Huang Xingyan Liu Zhen Long Feijie Song Jingsong You 《Chemical science》2015,6(1):288-293
Based on the well-defined five-membered aryl gold(iii) complexes, [Au(tpy)X2] (3a and 3b) and [AuBr(Ph)(tpy)] (7), as well as the aryl gold(iii) complex [AuCl2(Ph)(tpy)] (8) (tpy = 2-(o-tolyl)pyridine) as reliable models, we present a detailed study of the mechanism for gold(iii)-catalyzed oxidative cross-coupling reactions between cycloaurable arenes and arylboronic acids. Here we report the direct evidence for a mechanistic proposal including arene C–H activation, transmetallation and biaryl reductive elimination. The chelation-assisted C–H activation strategy has been used for the development of the gold(iii)-catalyzed C–H bond arylation of arenes with aryl reagents to forge extended π-conjugated systems. 相似文献
15.
Saurabh S. Chitnis Alasdair P. M. Robertson Neil Burford Jan J. Weigand Roland Fischer 《Chemical science》2015,6(4):2559-2574
Reductive elimination of [R3PPR3]2+, [11(R)]2+, from the highly electrophilic SbIII centres in [(R3P)3Sb]3+, [8(R)]3+, gives SbI containing cations [(R3P)Sb]1+, [9(R)]1+, which assemble into frameworks identified as cyclo-tetra(stibinophosphonium) tetracations, [(R3P)4Sb4]4+, [10(R)]4+. A phosphine catalyzed mechanism is proposed for conversion of fluoroantimony complexes [(R3P)2SbF]2+, [7(R)]2+, to [10(R)]4+, and the characterization of key intermediates is presented. The results constitute evidence of a novel ligand activation pathway for phosphines in the coordination sphere of hard, electron deficient acceptors. Characterization of the associated reactants and products supports earlier, albeit less definitive, detection of analogous phosphine ligand activation in CuIII and TlIII complexes, demonstrating that these prototypical ligands can behave simultaneously as reducing agents and σ donors towards a variety of hard acceptors. The reactivity of the parent cyclo-tetra(stibinophosphonium) tetracation, [10(Me)]4+, is directed by high charge concentration and strong polarization of the P–Sb bonds. The former explains the observed facility for reductive elimination to yield elemental antimony and the latter enabled activation of P–Cl and P–H bonds to give phosphinophosphonium cations, [Me3PPR′2]1+, including the first example of an H-phosphinophosphonium, [(Me3P)P(H)R′]1+, and 2-phosphino-1,3-diphosphonium cations, [(Me3P)2PR′]2+. Exchange of a phosphine ligand in [10(Me)]4+ with [nacnac]1– gives [(Me3P)3Sb4(nacnac)]3+, [15(Me)]3+, and with dmap gives [(Me3P)3Sb4(dmap)]4+, [16]4+. The lability of P–Sb or Sb–Sb interactions in [10(Me)]4+ has also been illustrated by characterization of heteroleptically substituted derivatives featuring PMe3 and PEt3 ligands. 相似文献
16.
The iridium-catalyzed C(sp3)–H borylation of methylchlorosilanes is investigated by means of density functional theory, using the B3LYP and M06 functionals. The calculations establish that the resting state of the catalyst is a seven-coordinate Ir(v) species that has to be converted into an Ir(iii)tris(boryl) complex in order to effect the oxidative addition of the C–H bond. This is then followed by a C–B reductive elimination to yield the borylated product, and the catalytic cycle is finally completed by the regeneration of the active catalyst over two facile steps. The two employed functionals give somewhat different conclusions concerning the nature of the rate-determining step, and whether reductive elimination occurs directly or after a prior isomerization of the Ir(v) hydride intermediate complex. The calculations reproduce quite well the experimentally-observed trends in the reactivities of substrates with different substituents. It is demonstrated that the reactivity can be correlated to the Ir–C bond dissociation energies of the corresponding Ir(v) hydride intermediates. The effect of the chlorosilyl group is identified to originate from the α-carbanion-stabilizing effect of the silicon, which is further reinforced by the presence of an electron-withdrawing chlorine substituent. Furthermore, the source of selectivity for the borylation of primary over secondary C(sp3)–H can be explained on a steric basis, by repulsion between the alkyl group and the Ir/ligand moiety. Finally, the difference in the reactivity between C(sp3)–H and C(sp2)–H borylation is investigated and rationalized in terms of distortion/interaction analysis. 相似文献
17.
The systematic investigation of substrate-bound α-amino acid auxiliaries has resulted in catalytic asymmetric C–H functionalization of cyclopropanes enabled by amino acid amides as chiral bidentate directing groups. The use of an Ile-NH2 auxiliary embedded in the substrate provided excellent levels of asymmetric induction (diastereomeric ratio of up to 72 : 1) in the Pd(ii)-catalyzed β-methylene C(sp3)–H bond activation of cyclopropanes and cross-coupling with aryl iodides. 相似文献
18.
The particle-swarm optimization method has been used to predict the stable high pressure structures up to 300 GPa of hydrogen-rich group 17 chlorine (HnCl, n = 2–7) compounds. In comparison to the group 1 and 2 hydrides, the structural modification associated with increasing pressure and hydrogen concentration is much less dramatic. The polymeric HCl chains already present in the low temperature phase under ambient pressure persist in all the high pressure structures. No transfer of electrons from the chlorine atoms into the interstitial sites is found. This indicates the chemical bonding at high pressure in group 17 elements is fundamentally different from the alkali and alkaline elements. It is found that almost perfectly triangular H3
+ ions can be stabilized in the crystalline structure of H5Cl. 相似文献
19.
Bess Vlaisavljevich Samuel O. Odoh Sondre K. Schnell Allison L. Dzubak Kyuho Lee Nora Planas Jeffrey B. Neaton Laura Gagliardi Berend Smit 《Chemical science》2015,6(9):5177-5185
Using a combination of density functional theory and lattice models, we study the effect of CO2 adsorption in an amine functionalized metal–organic framework. These materials exhibit a step in the adsorption isotherm indicative of a phase change. The pressure at which this step occurs is not only temperature dependent but is also metal center dependent. Likewise, the heats of adsorption vary depending on the metal center. Herein we demonstrate via quantum chemical calculations that the amines should not be considered firmly anchored to the framework and we explore the mechanism for CO2 adsorption. An ammonium carbamate species is formed via the insertion of CO2 into the M–Namine bonds. Furthermore, we translate the quantum chemical results into isotherms using a coarse grained Monte Carlo simulation technique and show that this adsorption mechanism can explain the characteristic step observed in the experimental isotherm while a previously proposed mechanism cannot. Furthermore, metal analogues have been explored and the CO2 binding energies show a strong metal dependence corresponding to the M–Namine bond strength. We show that this difference can be exploited to tune the pressure at which the step in the isotherm occurs. Additionally, the mmen–Ni2(dobpdc) framework shows Langmuir like behavior, and our simulations show how this can be explained by competitive adsorption between the new model and a previously proposed model. 相似文献
20.
Co(ii)-based metalloradical catalysis has, for the first time, been successfully applied for asymmetric intramolecular C–H alkylation of acceptor/acceptor-substituted diazo reagents. Through the design and synthesis of a new D
2-symmetric chiral amidoporphyrin as the supporting ligand, the Co(ii)-based metalloradical system, which operates at room temperature, is capable of 1,5-C–H alkylation of α-methoxycarbonyl-α-diazosulfones with a broad range of electronic properties, providing the 5-membered sulfolane derivatives in high yields with excellent diastereoselectivities and enantioselectivities. In addition to complete chemoselectivity toward allylic and allenic C–H bonds, the Co(ii)-based metalloradical catalysis for asymmetric C–H alkylation features a remarkable degree of functional group tolerance. 相似文献