首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper considers an unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system, in which the intelligent reflecting surface (IRS) is applied to enhance the performance of the wireless transmission. The role of the UAV is twofold: (1) It is equipped with a MEC server and receives computing tasks from ground users and IRS at the same time; (2) It sends interference signals to counter the potential eavesdropper. Here, the UAV is working as a full duplex equipment, i.e., sending and receiving meanwhile. We comprehensively considered the flight speed constraint of the UAV, the total mission data constraint and the minimum security rate constraint of multiple users on the ground. The phase matrix constraints of IRS are also considered. Our system is dedicated to maximizing the efficiency of secure computing. The formulated problem is highly non-convex, we consider to propose an alternative optimization algorithm. The simulation results show that the proposed scheme not only achieves higher safe computing efficiency, but also has better performance in terms of energy consumption and security rate.  相似文献   

2.
In this paper, we consider the latency minimization problem via designing intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) networks. For the scene when local users cannot complete all computing tasks independently, a common solution is transferring tasks to cloud servers. We consider that the MEC system contains multiple independent users, and each user sends task data to the base station in a partially offloaded manner. Our goal is to minimize the maximum latency for all users. The original problem is strongly non-convex, which caused difficulty to solve. We first introduce a new variable to transform the max–min problem into an alternative minimization problem, and then solve each optimization variable separately by the block coordinate descent method. Finally, our simulation experiments demonstrate that our proposed scheme obtain better performance with respect to other existing schemes.  相似文献   

3.
This article considers a backscatter-aided wireless powered mobile edge computing (BC-aided WPMEC) network, in which the tasks data of each Internet of Things (IoT) device can be computed locally or offloaded to the MEC server via backscatter communications, and design a resource allocation scheme regarding the weighted sum computation bits (WSCB) maximization of all the IoT devices. Towards this end, by optimizing the mobile edge computing (MEC) server’s transmit power, IoT devices’ power reflection coefficients, local computing frequencies and time, the time allocation between the energy harvesting and task offloading, as well as the binary offloading decision at each IoT device, we built a WSCB maximization problem, which belongs to a non-convex mixed integer programming problem. For solving this, the proof by contradiction and the objective function’s monotonicity are considered to determine the optimal local computing time of each IoT device and the optimal transmit power of the MEC server, and the time-sharing relaxation (TSR) is adopted to tackle the integer variables, which are used to simplify the original problem. Then, we decouple the simplified problem into two sub-problems by means of the block coordinate decent (BCD) technology, and each of the sub-problems is transformed to a convex one by introducing auxiliary variables. Based on this, we design a two-stage alternative (TSA) optimization algorithm to solve the formulated WSCB problem. Computer simulations validate that the TSA algorithm has a fast convergent rate and also demonstrate that the proposed scheme achieves a higher WSCB than the existing schemes.  相似文献   

4.
In this paper, we focus on minimizing energy consumption under the premise of ensuring the secure offloading of ground users. We used dual UAVs and intelligent reflective surfaces (IRS) to assist ground users in offloading tasks. Specifically, one UAV is responsible for collecting task data from ground users, and the other UAV is responsible for sending interference noise to counter potential eavesdroppers. The IRS can not only improve the transmission capacity of ground users, but also reduce the acceptance of eavesdroppers. The original problem is strong non-convex, so we consider using the block coordinate descent method. For the proposed sub-problems, we use Lagrangian duality and first-order Taylor expansion to obtain the results, and finally achieve system design through alternate optimization. The simulation results show that our proposed scheme is significantly better than other existing schemes.  相似文献   

5.
As an novel paradigm, computation offloading in the mobile edge computing (MEC) system can effectively support the resource-intensive applications for the mobile devices (MD) equipped with limited computing capability. However, the hostile radio transmission and data leakage during the offloading process may erode the MEC system’s potential. To tackle these hindrances, we investigate an IRS-assisted secure MEC system with eavesdroppers, where the intelligent reflecting surface (IRS) is deployed to enhance the communication between the MD and the AP equipped with edge servers and the malicious eavesdroppers may attack the wireless data offloaded by MD. The MD opt for offloading part of the tasks to the edge server for execution to support the computation-intensive applications. Moreover, the relevant latency minimization problem is formulated by optimizing the offloading ratio, the allocation of edge server computing capability, the multiple-user-detection (MUD) matrix and the IRS phase shift parameters, subject to the constraints of edge computation resource and practical IRS phase shifts. Then, the original problem is decouple into two subproblem, and the computing and communication subproblems are alternatively optimized by block coordinate descent (BCD) method with low complexity. Finally, simulation results demonstrate that the proposed scheme can significantly enhance the performance of secure offloading in the MEC system.  相似文献   

6.
This article examines a multiuser intelligent reflecting surface (RIS) aided mobile edge computing (MEC) system, where multiple edge nodes (ENs) with powerful calculating resources at the network can help compute the calculating tasks from the users through wireless channels. We evaluate the system performance by using the performance metric of communication and computing delay. To enhance the system performance by reducing the network delay, we jointly optimize the unpacking design and wireless bandwidth allocation, whereas the task unpacking optimization is solved by using the deep deterministic policy gradient (DDPG) algorithm. As to the bandwidth allocation, we propose three analytical solutions, where criterion I performs an equal bandwidth allocation, criterion II performs the allocation based on the transmission data rate, while criterion III performs the allocation based on the transmission delay. We finally provide simulation results to show that the proposed optimization on the task unpacking and bandwidth allocation is effective in decreasing the network delay.  相似文献   

7.
Computation offloading in mobile edge computing (MEC) systems emerges as a novel paradigm of supporting various resource-intensive applications. However, the potential capabilities of MEC cannot be fully unleashed when the communication links are blocked by obstacles. This paper investigates a double-reconfigurable-intelligent-surfaces (RISs) assisted MEC system. To efficiently utilize the limited frequency resource, the users can partially offload their computational tasks to the MEC server deployed at base station (BS) by adopting non-orthogonal multiple access (NOMA) protocol. We aim to minimize the energy consumption of users with limited resource by jointly optimizing the transmit power of users, the offloading fraction of users and the phase-shifts of RISs. Since the problem is non-convex with highly coupled variables, the block coordinate descent (BCD) method is leveraged to alternatively optimize the decomposed four subproblems. Specifically, we invoke successive convex approximation for low complexity (SCALE) and Dinkelbach technique to tackle the fractional programming of power optimization. Then the offloading fraction is obtained by closed-form solution. Further, we leverage semidefinite relaxation (SDR) and bisection method to address the phase-shifts design of double RISs. Finally, numerical results illustrate that the proposed double-RIS assisted NOMA scheme is capable of efficiently reducing the energy consumption and achieves significant performance gain over the benchmark schemes.  相似文献   

8.
This paper studies an intelligent reflect surface (IRS) aided mobile edge computing (MEC) network, where the direct link exists in the network can assist the task transmission for computing with the help of multiple elements in the IRS. We perform the performance evaluation by instigating the impact of direct link on the outage probability. Specifically, Firstly, we analyze the system outage probability (SOP) with a different number of reflecting elements and energy consumption constraints. Moreover, we propose two selection methods for the case of multiple reflecting elements. In particular, Method I maximizes the first-hop reflecting channel while Method II maximizes the dual-hop product channel. In further, for the two different methods, we estimate the outage probability of the system by considering the reflecting channel information and providing the analytic expression of the outage probability, respectively. Finally, the numerical results verify the correctness of our results. The results show that increasing the number of reflecting elements can effectively reduce the SOP.  相似文献   

9.
Intelligent reflecting surface (IRS)-enhanced dynamic spectrum access (DSA) is a promising technology to enhance the performance of the mobile edge computing (MEC) system. In this paper, we consider the integration of the IRS enhanced DSA technology to a MEC system, and study the pertinent joint optimization of the phase shift coefficients of the IRS, the transmission powers, the central processing unit (CPU) frequencies, as well as the task offloading time allocations of the secondary users (SUs) to maximize the average computation bits of the SUs. Due to the non-convexity, the formulated problem is difficult to solve. In order to tackle this difficulty, we decompose the optimization problem into tractable subproblems and propose an alternating optimization algorithm to optimize the optimization variables in an iterative fashion. Numerical results are provided to show the effectiveness and the correctness of the proposed algorithm.  相似文献   

10.
This article examines a multi-user mobile edge computing (MEC) system for the Internet of Vehicle (IoV), where one edge point (EP) nearby the vehicles can help assist in processing the compute-intensive tasks. For the MEC networks, the majority of existing works concentrate on the minimization of system cost of task offloading under the perfect channel estimation, which however fails to consider the practical limitation of imperfect channel estimation (CSI) because of vehicles’ high-mobility. Therefore, the goal of our study is to reduce the delay as well as energy consumption (EC) of computation and communication with imperfect CSI, which are the two significant performance metrics of MEC network. With this aim, we first express the system cost as a form of the linear combination of the delay and EC, and then formulate the optimization problem for the system cost. Moreover, a novel deep approach is proposed, which is integrated by deep reinforcement learning (DRL) with the Lagrange multiplier to jointly minimize the system cost. In particular, the DRL algorithm is employed to obtain the capable offloading strategy, while the Lagrange multiplier is used to obtain the bandwidth allocation. The simulated results are finally presented to show that the devised approach outperforms the traditional ones.  相似文献   

11.
Computational efficiency is a direction worth considering in moving edge computing (MEC) systems. However, the computational efficiency of UAV-assisted MEC systems is rarely studied. In this paper, we maximize the computational efficiency of the MEC network by optimizing offloading decisions, UAV flight paths, and allocating users’ charging and offloading time reasonably. The method of deep reinforcement learning is used to optimize the resources of UAV-assisted MEC system in complex urban environment, and the user’s computation-intensive tasks are offloaded to the UAV-mounted MEC server, so that the overloaded tasks in the whole system can be alleviated. We study and design a framework algorithm that can quickly adapt to task offload decision making and resource allocation under changing wireless channel conditions in complex urban environments. The optimal offloading decisions from state space to action space is generated through deep reinforcement learning, and then the user’s own charging time and offloading time are rationally allocated to maximize the weighted sum computation rate. Finally, combined with the radio map to optimize the UAC trajectory to improve the overall weighted sum computation rate of the system. Simulation results show that the proposed DRL+TO framework algorithm can significantly improve the weighted sum computation rate of the whole MEC system and save time. It can be seen that the MEC system resource optimization scheme proposed in this paper is feasible and has better performance than other benchmark schemes.  相似文献   

12.
13.
In this paper, we investigate an intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) network under physical-layer security, where users can partially offload confidential and compute-intensive tasks to a computing access point (CAP) with the help of the IRS. We consider an eavesdropping environment, where an eavesdropper steals information from the communication. For the considered MEC network, we firstly design a secure data transmission rate to ensure physical-layer security. Moreover, we formulate the optimization target as minimizing the system cost linearized by the latency and energy consumption (ENCP). In further, we employ a deep deterministic policy gradient (DDPG) to optimize the system performance by allocating the offloading ratio and wireless bandwidth and computational capability to users. Finally, considering the impacts from different resources, based on DDPG, seeing our optimization strategy as one criterion, we designed other criteria with different resource allocation schemes. And some simulation results are given to demonstrate that our proposed criterion outperforms other criteria.  相似文献   

14.
Having shown promising performance with high flexibility and efficiency in vehicular edge computing (VEC) network, the parked vehicles (PVs) received an increasing number of attentions in recent years. However, PVs’ residual battery power restricts their running time. In addition, there is still no alternate resource pool for the PVs to cope with the emergencies in the previous VEC framework. To alleviate these problems, we model a cloud-assisted parked vehicular edge computing (PVEC) framework, in which the PVs are classified based on their residual battery power. PVs corporate with the cloud servers (CSs) for the computational resources provision. In addition, we formulate the utilities of the service provider (SP) and PVs and design a contract-based resource allocation problem for the maximization of the SP’s utility. Considering that it is intractable to solve the optimization problem directly, the primal problem is simplified and decoupled into two sub-problems. To design the optimal contracts, we solve the sub-problems by Lagrangian multiplier method and dual function. Simulation results prove that the utilities of PVs can reach to the maximum when they choose the contract corresponding to their types. In addition, the simulation results illustrate the superiority of proposed scheme over previous schemes in improving the utilities of the SP and social welfare.  相似文献   

15.
Wireless power transfer (WPT) and mobile edge computing (MEC) are two advanced technologies that could improve the computing power and range of mobile devices. However, by integrating the unmanned aerial vehicle (UAV) into wireless powered MEC systems, wireless energy transfer will be susceptible to the “double near–far” effect. Therefore, in order to further overcome the influence of the “double near–far” effect, this paper considers the optimization of time slot allocation for UAV-assisted wireless powered cooperative MEC system, which includes an access point (UAV) and two mobile devices. The purpose of the study is to minimize the total transmission energy of the UAV while satisfying the delay and size of the computational tasks, so this paper proposed a 2:1:1 time-slot optimization allocation method. The method exploits the synergy of users so that the mobile device which is closer to the UAV acts as an offloading relay, by combining power and time slot optimization to minimize the total energy consumption of the UAV. Compared with the equal time slot scheme before the improvement, this method can not only utilize the wireless transmission energy to charge the mobile device for more time in the first period, but also can save the time of data transmission of the closer device in the third period, and it can enhance the rate of data transmission of the mobile devices at the same time. The results show that the task capacity of the system computed will be increased compared to the original scheme; the total transmission rate of the whole system is also improved by the same order of magnitude. The simulation results verify the effectiveness and reliability of the algorithm of the paper, and the comprehensive performance of the system can be maximized by the flexible offloading algorithm.  相似文献   

16.
莫则尧  裴文兵 《物理》2009,38(08):552-558
科学计算应用程序是科学计算研究的成果集成,其研制不同于通常的计算机应用软件.随着科学计算研究的不断深入和高性能计算机的迅猛发展,应用程序越来越依赖于实际应用和高性能计算的交叉融合,迫切需要革新程序的研制思路,发展研制方法.文章简要介绍了科学计算应用程序的主要特征,分析了应用程序面临的主要困难,探讨了研制应用程序的新思路和新方法.  相似文献   

17.
This work investigates performance of system throughput in intelligent reflecting surfaces (IRSs)-enabled phase cooperative non-orthogonal multiple access (NOMA) framework. By exploiting heterogeneous cognitive radio networks concept the aim is to maximize the sum rate of secondary users in the proposed phase cooperative downlink network configuration via optimization solutions. However, the optimization problem comes out to be NP-hard and precludes direct solution. Hence, an alternating optimization is applied at the primary network to solve the maximization problem by exploiting the transmit beamforming (BF) at the power station (PS) and phase shift optimization at the IRS. Later, sum rate maximization for secondary network is performed by utilizing phase shifts of primary network via phase cooperation. In order to find global optimal solutions for active beamformers at both PSs, a branch-reduce-and-bound (BRnB) method is used whereas, passive phase shift optimization at the primary PS is performed via a simple iterative solution, i.e., the element-wise block coordinate descent method. For the proposed framework, Monte-Carlo simulations are performed where the optimality of the global solution is compared with heuristic BF methods including minimum-mean-square-error/regularized zero-forcing-beamforming (ZFBF) and ZFBF. The BRnB algorithm sets an upper performance bound by improving the sum rate of users in comparison with the conventional heuristic BF schemes. This work signifies the utilization of phase cooperation in IRS-assisted NOMA networks for a multi-user environment.  相似文献   

18.
In this paper, we focus on the secrecy rate maximization problem in intelligent reflecting surface (IRS)-assisted cognitive radio (CR) networks. In order to improve the security, there is a common scheme to add artificial noise (AN) to the transmitted signal, which is also applied in this paper. Further, in CR networks, the secondary users always cannot obtain accurate channel state information (CSI) about the primary user and eavesdropper. By taking jointly design for the IRS phase shift matrix, the transmitted beamforming of the secondary base station (BS), and the covariance matrix of AN, our objective is to maximize the minimal secrecy rate of all secondary users. Due to the serious coupling among the designed variables, it cannot be solved by conventional methods. We propose an alternating optimization (AO) algorithm. In simulation results, we apply primary users and secondary users randomly distributed in the communication area, which numerically demonstrate the superiority of our proposed scheme.  相似文献   

19.
胡庆成  张勇  许信辉  邢春晓  陈池  陈信欢 《物理学报》2015,64(19):190101-190101
复杂网络中影响力最大化建模与分析是社会网络分析的关键问题之一, 其研究在理论和现实应用中都有重大的意义. 在给定s值的前提下, 如何寻找发现s个最大影响范围的节点集, 这是个组合优化问题, Kempe等已经证明该问题是NP-hard问题. 目前已有的随机算法时间复杂度低, 但是结果最差; 其他贪心算法时间复杂度很高, 不能适用于大型社会网络中, 并且这些典型贪心算法必须以了解网络的全局信息为前提, 而获取整个庞大复杂且不断发展变化的社会网络结构是很难以做到的. 我们提出了一种新的影响力最大化算法模型RMDN, 及改进的模型算法RMDN++, 模型只需要知道随机选择的节点以及其邻居节点信息, 从而巧妙地回避了其他典型贪心算法中必须事先掌握整个网络全局信息的问题, 算法的时间复杂度仅为O(s log(n)); 然后, 我们利用IC模型和LT模型在4种不同的真实复杂网络数据集的实验显示, RMDN, RMDN++算法有着和现有典型算法相近的影响力传播效果, 且有时还略优, 同时在运行时间上则有显著的提高; 我们从理论上推导证明了方法的可行性. 本文所提出的模型算法适用性更广, 可操作性更强, 为这项具有挑战性研究提供了新的思路和方法.  相似文献   

20.
We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By choosing a certain evolution time, we propose the realization of a set of universal single-and two-qubit logical gates. Due to its intrinsic stability and scalability, the silicon dangling-bond charge qubit can be regarded as one of the most promising candidates for quantum computation. Compared to the previous schemes on quantum computing with silicon bulk systems, our scheme shows such advantages as a long coherent time and direct control and readout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号