首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple, “click” synthetic approach to a new type of hybrid phosph(III)azane/NHC system is described. The presence of the phosphazane P2N2 ring unit, with P atoms flanking the NCN fragment and with this ring perpendicular to the binding site of the NHC, provides unique opportunities for modifying the electronic and steric character of these carbenes.  相似文献   

2.
Benzoyl-CoA epoxidase is a dinuclear iron enzyme that catalyzes the epoxidation reaction of the aromatic ring of benzoyl-CoA with chemo-, regio- and stereo-selectivity. It has been suggested that this enzyme may also catalyze the deoxygenation reaction of epoxide, suggesting a unique bifunctionality among the diiron enzymes. We report a density functional theory study of this enzyme aimed at elucidating its mechanism and the various selectivities. The epoxidation is suggested to start with the binding of the O2 molecule to the diferrous center to generate a diferric peroxide complex, followed by concerted O–O bond cleavage and epoxide formation. Two different pathways have been located, leading to (2S,3R)-epoxy and (2R,3S)-epoxy products, with barriers of 17.6 and 20.4 kcal mol–1, respectively. The barrier difference is 2.8 kcal mol–1, corresponding to a diastereomeric excess of about 99 : 1. Further isomerization from epoxide to phenol is found to have quite a high barrier, which cannot compete with the product release step. After product release into solution, fast epoxide–oxepin isomerization and racemization can take place easily, leading to a racemic mixture of (2S,3R) and (2R,3S) products. The deoxygenation of epoxide to regenerate benzoyl-CoA by a diferrous form of the enzyme proceeds via a stepwise mechanism. The C2–O bond cleavage happens first, coupled with one electron transfer from one iron center to the substrate, to form a radical intermediate, which is followed by the second C3–O bond cleavage. The first step is rate-limiting with a barrier of only 10.8 kcal mol–1. Further experimental studies are encouraged to verify our results.  相似文献   

3.
A strategy to extend the detection range of weakly-binding targets is reported that takes advantage of fluorescence resonance energy transfer (FRET)-based bioassays based on molecular beacon aptamers (MBAs) and cationic conjugated polyelectrolytes (CPEs). In comparison to other aptamer-target pairs, the aptamer-based adenosine triphosphate (ATP) detection assays are limited by the relatively weak binding between the two partners. In response, a series of MBAs were designed that have different stem stabilities while keeping the constant ATP-specific aptamer sequence in the loop part. The MBAs are labeled with a fluorophore and a quencher at both termini. In the absence of ATP, the hairpin MBAs can be opened by CPEs via a combination of electrostatic and hydrophobic interactions, showing a FRET-sensitized fluorophore signal. In the presence of ATP, the aptamer forms a G-quadruplex and the FRET signal decreases due to tighter contact between the fluorophore and quencher in the ATP/MBA/CPE triplex structure. The FRET-sensitized signal is inversely proportional to [ATP]. The extension of the detection range is determined by the competition between opening of the ATP/MBA G-quadruplex by CPEs and the composite influence by ATP/aptamer binding and the stem interactions. With increasing stem stability, the weak binding of ATP and its aptamer is successfully compensated to show the resistance to disruption by CPEs, resulting in a substantially broadened detection range (from millimolar up to nanomolar concentrations) and a remarkably improved limit of detection. From a general perspective, this strategy has the potential to be extended to other chemical- and biological-assays with low target binding affinity.  相似文献   

4.
CpG dinucleotide in DNA has a great tendency to mutate to TpG dinucleotide and this transition can cause some serious diseases. In this work, fluorescent Ag nanoclusters (Ag NCs) were employed as useful inorganic fluorophores for the potential of selectively discriminating TpG dinucleotide from CpG dinucleotide. Opposite the base Y of interest in YpG dinucleotide (Y = C or T), a bulge site was introduced so as to make the base Y to be unpaired and ready for Ag+ binding. Such that the unpaired Y and context base pairs can provide a specific space suitable for creating fluorescent Ag NCs. We found that in comparison with CpG dinucleotide, TpG dinucleotide is much more efficient in growing fluorescent Ag NCs. Therefore, mutation of CpG dinucleotide to TpG can be identified by a turn-on fluorescence response and a high selectivity. More interestingly, Ag NCs exhibit a better performance in the TpG recognition over the other dinucleotides (Y = A and G) than the previously used organic fluorophores. Additionally, the effectiveness of the bulge site design in discriminating these dinucleotides was evidenced by control DNAs having the abasic site structure. We expect that a practical method for TpG dinucleotide recognition with a high selectivity can be developed using the bulge site-grown fluorescent Ag NCs as novel probes.  相似文献   

5.
Density functional theory calculations were performed to elucidate the mechanism of the ruthenium-catalyzed hydroamidation of terminal alkynes, a powerful and sustainable method for the stereoselective synthesis of enamides. The results provide an explanation for the puzzling experimental finding that with tri-n-butylphosphine (P(Bu)3) as the ligand, the E-configured enamides are obtained, whereas the stereoselectivity is inverted in favor of the Z-configured enamides with (dicyclohexylphosphino)methane (dcypm) ligands. Using the addition of pyrrolidinone to 1-hexyne as a model reaction, various pathways were investigated, among which a catalytic cycle turned out to be most advantageous for both ligand systems that consists of: (a) oxidative addition, (b) alkyne coordination, (c) alkyne insertion (d) vinyl-vinylidene rearrangement, (e) nucleophilic transfer and finally (f) reductive elimination. The stereoselectivity of the reaction is decided in the nucleophilic transfer step. For the P(nBu)3 ligand, the butyl moiety is oriented anti to the incoming 2-pyrolidinyl unit during the nucleophilic transfer step, whereas for the dcypm ligand, steric repulsion between the butyl and cyclohexyl groups turns it into a syn orientation. Overall, the formation of E-configured product is favorable by 4.8 kcal mol–1 GSDL) for the catalytic cycle computed with P(Bu)3 as ancillary ligand, whereas for the catalytic cycle computed with dcypm ligands, the Z-product is favored by 7.0 kcal mol–1 GSDL). These calculations are in excellent agreement with experimental findings.  相似文献   

6.
Peptide sequences that can discriminate between gold facets under aqueous conditions offer a promising route to control the growth and organisation of biomimetically-synthesised gold nanoparticles. Knowledge of the interplay between sequence, conformations and interfacial properties is essential for predictable manipulation of these biointerfaces, but the structural connections between a given peptide sequence and its binding affinity remain unclear, impeding practical advances in the field. These structural insights, at atomic-scale resolution, are not easily accessed with experimental approaches, but can be delivered via molecular simulation. A current unmet challenge lies in forging links between predicted adsorption free energies derived from enhanced sampling simulations with the conformational ensemble of the peptide and the water structure at the surface. To meet this challenge, here we use an in situ combination of Replica Exchange with Solute Tempering with Metadynamics simulations to predict the adsorption free energy of a gold-binding peptide sequence, AuBP1, at the aqueous Au(111), Au(100)(1 × 1) and Au(100)(5 × 1) interfaces. We find adsorption to the Au(111) surface is stronger than to Au(100), irrespective of the reconstruction status of the latter. Our predicted free energies agree with experiment, and correlate with trends in interfacial water structuring. For gold, surface hydration is predicted as a chief determining factor in peptide–surface recognition. Our findings can be used to suggest how shaped seed-nanocrystals of Au, in partnership with AuBP1, could be used to control AuNP nanoparticle morphology.  相似文献   

7.
8.
A novel fluorescence turn-on microRNA (miRNA) detection method based on duplex-specific nuclease (DSN) and a perylene probe is presented in this study. A positively charged perylene derivative (compound 1) was used as the fluorescent probe. Compound 1 exhibits strong monomer fluorescence in an aqueous buffer solution. It is well known that single-stranded DNA is a polyanion in nature. Thus, it can induce the aggregation of compound 1 through strong electrostatic, hydrophobic and π−π stacking interactions. As a result, the fluorescence of compound 1 was efficiently quenched. When the target miRNA was added, the formation of DNA-RNA hybridized duplex initiated the cleavage of the DNA strand by DSN cycle reaction, which resulted in disaggregation of compound 1. A fluorescence turn-on signal was detected, and a novel miRNA sensing method was therefore established. The presented method is label-free, simple, cost effective, sensitive and selective.  相似文献   

9.
A phenyl-selenium-substituted coumarin probe was synthesized for the purpose of achieving highly selective and extremely rapid detection of glutathione (GSH) over cysteine (Cys)/homocysteine (Hcy) without background fluorescence. The fluorescence intensity of the probe with GSH shows a ∼100-fold fluorescent enhancement compared with the signal generated for other closely related amino acids, including Cys and Hcy. Importantly, the substitution reaction with the sulfhydryl group of GSH at the 4-position of the probe, which is doubly-activated by two carbonyl groups, occurs extremely fast, showing subsecond maximum fluorescence intensity attainment; equilibrium was reached within 100 ms (UV-vis). The probe selectivity for GSH was confirmed in Hep3B cells by confocal microscopy imaging.  相似文献   

10.
In this study we have used two fluorescent probes, tetrakis(diisopropylguanidino)-zinc-phthalocyanine (Zn-DIGP) and N-methylmesoporphyrin IX (NMM), to monitor the reassembly of “split” G-quadruplex probes on hybridization with an arbitrary “target” DNA. According to this approach, each split probe is designed to contain half of a G-quadruplex-forming sequence fused to a variable sequence that is complementary to the target DNA. Upon mixing the individual components, both base-pairing interactions and G-quadruplex fragment reassembly result in a duplex–quadruplex three-way junction that can bind to fluorescent dyes in a G-quadruplex-specific way. The overall fluorescence intensities of the resulting complexes were dependent on the formation of proper base-pairing interactions in the duplex regions, and on the exact identity of the fluorescent probe. Compared with samples lacking any “target” DNA, the fluorescence intensities of Zn-DIGP-containing samples were lower, and the fluorescence intensities of NMM-containing samples were higher on addition of the target DNA. The resulting biosensors based on Zn-DIGP are therefore termed “turn-off” whereas the biosensors containing NMM are defined as “turn-on”. Both of these biosensors can detect target DNAs with a limit of detection in the nanomolar range, and can discriminate mismatched from perfectly matched target DNAs. In contrast with previous biosensors based on the peroxidase activity of heme-bound split G-quadruplex probes, the use of fluorescent dyes eliminates the need for unstable sensing components (H2O2, hemin, and ABTS). Our approach is direct, easy to conduct, and fully compatible with the detection of specific DNA sequences in biological fluids. Having two different types of probe was highly valuable in the context of applied studies, because Zn-DIGP was found to be compatible with samples containing both serum and urine whereas NMM was compatible with urine, but not with serum-containing samples.  相似文献   

11.
A single stranded oligonucleotide could induce aggregation of a perylene probe, the probe's monomer fluorescence was efficiently quenched. However, when the oligonucleotide was 5'-phosphorylated by polynucleotide kinase, it could be very efficiently degraded by lambda exonuclease, probe monomers were released, and a turn on fluorescence signal was detected.  相似文献   

12.
Taddol-based phosphoramidite ligands enable enantioselective palladium(0)-catalyzed C–H arylation of cyclopropanes. The cyclized products are obtained in high yields and enantioselectivities. The reported method provides efficient access to a broad range of synthetically attractive cyclopropyl containing dihydroquinolones and dihydroisoquinolones as well as allows for an efficient enantioselective construction of the 7-membered ring of the cyclopropyl indolobenzazepine core of BMS-791325.  相似文献   

13.
Multimodal imaging is a highly desirable biomedical application since it can provide complementary information from each imaging modality. We propose a protein engineering-based strategy for the construction of a bimodal probe for fluorescence and magnetic resonance imaging. A recombinant protein was generated by the fusion of a supercharged green fluorescence protein (GFP36+) with a lanthanide-binding tag (dLBT) that can stably bind two Gd3+ ions. The GFP36+–dLBT fusion protein showed strong fluorescence and exhibited efficient contrast enhancement in magnetic resonance imaging. This protein probe improves the MR relaxation more efficiently than Gd-DTPA (gadopentetate dimeglumine). The superior cell-penetrating activity of GFP36+ allows the efficient cellular uptake of this fusion protein and it can thus be used as a cellular imaging probe. Dual imaging was conducted in vitro and in mice. This result indicates that the fusion of different functional domains is a feasible approach for making multi-modal imaging agents.  相似文献   

14.
Many glycoproteins are intimately linked to the onset and progression of numerous heritable or acquired diseases of humans, including cancer. Indeed the recognition of specific glycoproteins remains a significant challenge in analytical method and diagnostic development. Herein, a hierarchical bottom-up route exploiting reversible covalent interactions with boronic acids and so-called click chemistry for the fabrication of glycoprotein selective surfaces that surmount current antibody constraints is described. The self-assembled and imprinted surfaces, containing specific glycoprotein molecular recognition nanocavities, confer high binding affinities, nanomolar sensitivity, exceptional glycoprotein specificity and selectivity with as high as 30 fold selectivity for prostate specific antigen (PSA) over other glycoproteins. This synthetic, robust and highly selective recognition platform can be used in complex biological media and be recycled multiple times with no performance decrement.  相似文献   

15.
Many existing irrigation, industrial and chemical storage sites are currently introducing hazardous anions into groundwater, making the monitoring of such sites a high priority. Detecting and quantifying anions in water samples typically requires complex instrumentation, adding cost and delaying analysis. Here we address these challenges by development of an optical molecular method to detect and discriminate a broad range of anionic contaminants with DNA-based fluorescent sensors. A library of 1296 tetrameric-length oligodeoxyfluorosides (ODFs) composed of metal ligand and fluorescence modulating monomers was constructed with a DNA synthesizer on PEG-polystyrene microbeads. These oligomers on beads were incubated with YIII or ZnII ions to provide affinity and responsiveness to anions. Seventeen anions were screened with the library under an epifluorescence microscope, ultimately yielding eight chemosensors that could discriminate 250 μM solutions of all 17 anions in buffered water using their patterns of response. This sensor set was able to identify two unknown anion samples from ten closely-responding anions and could also function quantitatively, determining unknown concentrations of anions such as cyanide (as low as 1 mM) and selenate (as low as 50 μM). Further studies with calibration curves established detection limits of selected anions including thiocyanate (detection limit ∼300 μM) and arsenate (∼800 μM). The results demonstrate DNA-like fluorescent chemosensors as versatile tools for optically analyzing environmentally hazardous anions in aqueous environments.  相似文献   

16.
A series of luminescent iridium(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The iridium(iii) complex 9 [Ir(pbi)2(5,5-dmbpy)]PF6 (where pbi = 2-phenyl-1H-benzo[d]imidazole; 5,5-dmbpy = 5,5′-dimethyl-2,2′-bipyridine) exhibited high luminescence for G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a G-quadruplex-based assay for protein tyrosine kinase-7 (PTK7) in aqueous solution. PTK7 is an important biomarker for a range of leukemias and solid tumors. In the presence of PTK7, the specific binding of the sgc8 aptamer sequence triggers a structural transition and releases the G-quadruplex-forming sequence. The formation of the nascent G-quadruplex structure is then detected by the G-quadruplex-selective iridium(iii) complex with an enhanced luminescent response. Moreover, the application of the assay for detecting PTK7 in cellular debris and membrane protein extract was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for PTK7.  相似文献   

17.
The ability of 2,2'-bipyridine-bound copper(ii) ions to quench the photoluminescence of hydrophobic CdSe quantum dots is used to create a novel, selective turn-on fluorescence cyanide sensor.  相似文献   

18.
19.
The classical orthorhombic layered phase of V2O5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Herein, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V2O5 (ζ-V2O5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.  相似文献   

20.
The existence of cation-vacancy sites in fullerides might lead to long-range ordering and generate a new vacancy-ordered superstructure. The purpose of this work is to search whether or not long-range ordering of vacant tetrahedral sites, namely superstructure emerges in nonstoichiometric K 1.5 Ba 0.25 CsC 60 fulleride. Therefore, K 1.5 Ba 0.25 CsC 60 with cation-vacancy sites is synthesized using a precursor method to avoid inadequate stoichiometry control and formation of impurity phases within the target composition. For this purpose, first, phase-pure K 6 C 60 , Ba 6 C 60 and Cs 6 C 60 precursors are synthesized. Stoichiometric quantities of these precursors are used for further reaction with C 60 to afford K 1.5 Ba 0.25 CsC 60 . Rietveld analysis of the high-resolution synchrotron X-ray powder diffraction data of the precursors and K 1.5 Ba 0.25 CsC 60 confirms that K 6 C 60 , Ba 6 C 60 and Cs 6 C 60 are single-phase and they crystallize in a body-centered-cubic structure ( Im 3) as reported in the literature. The analysis also shows that K 1.5 Ba 0.25 CsC 60 phase can be perfectly modeled using a face-centered cubic structure. No new peaks appear which could have implied the appearance of a superstructure. This suggests that there is no long-range ordered arrangement of vacant tetrahedral sites in K 1.5 Ba 0.25 CsC 60 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号