首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The decomposition of lithium amide (LiNH2) to lithium imide (Li2NH) and ammonia (NH3) with and without high-energy ball milling is investigated to lay a foundation for identifying methods to enhance the hydrogen uptake/release of the lithium amide and lithium hydride mixture. A wide range of analytical instruments are utilized to provide unambiguous evidence of the effect of mechanical activation. It is shown that ball milling reduces the onset temperature for the decomposition of LiNH2 from 120 degrees C to room temperature. The enhanced decomposition via ball milling is attributed to mechanical activation related to the formation of nanocrystallites, the reduced particle size, the increased surface area, and the decreased activation energy. The more mechanical activation there is, then the more improvement there is in enhancing the decomposition of LiNH2. It also is found that the activation energy for the decomposition of LiNH2 without ball milling is 243.98 kJ/mol, which is reduced to 222.20 kJ/mol after ball milling at room temperature for 45 min and is further reduced to 138.05 kJ/mol after ball milling for 180 min. The rate of the isothermal decomposition at the later phase of the LiNH2 decomposition is controlled by diffusion of NH3 through the Li2NH layer.  相似文献   

2.
Iron catalyst for ammonia synthesis of various mean sizes of iron nanocrystallites were nitrided with ammonia in a differential reactor equipped with systems that made it possible to conduct both thermogravimetric measurements and hydrogen concentration analyses in the reacting gas mixture. The nitriding process was investigated under atmospheric pressure at the temperature of 475°C. It was found that along with an increase of mean size of iron nanocrystallites, with a decrease of specific surface area of the samples, nitriding degree of solid samples increased. At the same time the rate of surface reaction of catalytic ammonia decomposition decreased. Along with an increase of the samples’ specific surface area an increase of the catalyst’s activity was observed. However, it was also observed that the concentration of active sites on the catalysts’ surface decreased along with an increase of specific surface area.  相似文献   

3.
In contrast to the traditional metal hydrides, in which hydrogen storage involves the reversible hydrogen entering/exiting of the host hydride lattice, LiBH4 releases hydrogen via decomposition that produces segregated LiH and amorphous B phases. This is obviously the reason why lithium borohydride applications in fuel cells so far meet only one requirement — high hydrogen storage capacity. Nevertheless, its thermodynamics and kinetics studies are very active today and efficient ways to meet fuel cell requirements might be done through lowering the temperature for hydrogenation/dehydrogenation and suitable catalyst. Some improvements are expected to enable LiBH4 to be used in on-board hydrogen storage.  相似文献   

4.
Ammonia is feeding nearly half the world population and also holds the promise as a carbon‐free energy carrier. The development of ammonia synthesis and decomposition processes under milder conditions is a grand challenge for more than a century. Increasing effort is devoted to this area in recent years and encouraging progress has been achieved. In this paper, we summarize our recent research using alkali or alkaline earth metal amides, imides and hydrides for ammonia synthesis and decomposition. These materials could serve as either indispensible component of active center in thermal catalytic process or nitrogen carrier for chemical looping ammonia synthesis. The synergy of amide, imide, or hydride with transition metals enables ammonia synthesis or decomposition with unprecedented high efficiency under milder reaction conditions, and thus opens an avenue to advance the chemistry or catalysis of N2 fixation reaction. The compositional and structural diversity of the amide, imide and hydride materials provides plenty of opportunity and potential for further exploration and optimization.  相似文献   

5.
We demonstrate, through structural refinement from synchrotron X-ray diffraction data, that the mechanism of the transformation between lithium amide and lithium imide during hydrogen cycling in the important Li-N-H hydrogen storage system is a bulk reversible reaction that occurs in a non-stoichiometric manner within the cubic anti-fluorite-like Li-N-H structure.  相似文献   

6.
SO2 是危害最为严重的大气污染物之一 ,也是造成酸雨的元凶。将SO2 选择性还原为单质硫 ,既能消除SO2 对环境的污染 ,又能回收单质硫 ,具有特别重要的意义。根据所用的还原剂的不同 ,催化还原SO2 到单质硫可分为H2 、炭、烃类 (主要是CH4 )、CO和NH3还原法[1] 。氨还原法是基于氨的催化分解生成N2 和H2 混合气 ,其中的H2 再还原SO2 到硫和H2 S ,然后进行高温Claus反应生成单质硫。Paik[2 ] 等以第四周期过渡金属硫化物载于Al2 O3 作为催化剂 ,研究了H2 还原SO2 为单质硫的反应 ,认为过渡金属硫化物是…  相似文献   

7.
Reversible, supramolecular polymer networks based on commercially available bulk chemicals, and prepared using an industrially attractive route are described. The difunctional, low molecular weight polytetramethyleneoxide is functionalized with trimellitic imide, and reversibly crosslinked with the trifunctional melamine using the well known imide‐diaminopyridine triple hydrogen bonding pattern. Molecular modelling calculations as well as experimental studies on model compounds indicate that the aimed 1:3 melamine ‐ imide stoichiometry is obtained. The resulting reversible, supramolecular polymer structures show a rheological behaviour, that is typical for polymer networks. The results presented here describe an industrially accessible route to use supramolecular interactions in order to obtain materials with novel properties.  相似文献   

8.
Ni/SiO2催化剂上甲烷催化裂解制氢   总被引:9,自引:5,他引:9  
研究了固定床反应器上甲烷在Ni/SiO2催化剂上的裂解反应,并分别用O2、H2O进行催化剂失活/活化循环实验,并对催化剂用XRD进行分析。结果表明,Ni/SiO2催化剂具有良好的催化性能,甲烷转化率~40%,并能在150 min的时间内保持其活性,无论是用空气氧化还是水蒸气汽化,都能有效地活化已失活的催化剂。XRD实验显示,多次裂解-再生循环过程,对催化剂结构没有明显破坏。  相似文献   

9.
We recently reported the synthesis of a new quaternary hydride in the lithium-boron-nitrogen-hydrogen quaternary phase diagram with the approximate composition LiB0.33N0.67H2.67 having a theoretical hydrogen content of 11.9 wt %. This new compound forms by the reaction of appropriate amounts of lithium amide (LiNH2) and lithium borohydride (LiBH4) and releases greater than 10 wt % hydrogen when heated. A small amount of ammonia, 2-3 mol % of the generated gas, is also released. We now report a study of hydrogen and ammonia release from the series of reactant mixtures (LiNH2)x(LiBH4)1-x, where x=0.667 corresponds to the composition LiB0.33N0.67H2.67. We measured hydrogen and ammonia release amounts as a function of composition and found that maximum hydrogen and minimum ammonia release do occur for x=0.667. We also present evidence for an additional new quaternary phase and for two possibly metastable phases in this system.  相似文献   

10.
Cobalt molybdenum compounds are important catalytic materials in many processes, e.g. in splitting of ammonia to form CO free hydrogen fuel. We here report on deposition of such cobalt molybdenum oxides by atomic layer deposition (ALD) using different types of metal precursors CoCp(2) (Cp = cyclopentadienyl), Co(thd)(2) (Hthd = 2,2,6,6-tetramethylheptan-3,5-dione), Mo(CO)(6) and oxygen precursors O(3), H(2)O, and (O(3) + H(2)O). The growth dynamics have been investigated using quartz crystal microbalance (QCM) methods. It is evident that mixing of the different precursor chemistries affect the growth patterns. When water is introduced to the reactions, a surface controlled mechanism takes place which guides the deposited stoichiometry towards the CoMoO(4) phase over a wide range of cobalt rich pulsed compositions. This is a rare example of how surface chemistry can control stoichiometry of depositions in ALD. The deposited films have been investigated by X-ray diffraction, Raman spectroscopy and atomic force microscopy. The catalytic activity of selected films have been characterized by temperature programmed ammonia decomposition, proving the films to be catalytically active and lowering the decomposition temperature by some 200 °C.  相似文献   

11.
Lu Y  Wang H  Liu Y  Xue Q  Chen L  He M 《Lab on a chip》2007,7(1):133-140
A novel microfibrous composite bed reactor was developed and was demonstrated for high efficiency hydrogen production by the decomposition of ammonia at moderate temperatures in portable fuel cell power system applications. By using a high-speed and low-cost papermaking technology combined with a subsequent sintering process, sinter-locked three-dimensional microfibrous networks consisting of approximately 3 vol% 8 microm (dia.) nickel microfibers were utilized to entrap approximately 35 vol% 100-200 microm dia. porous Al(2)O(3) support particulates. A CeO(2) promoter and active Ni component were then dispersed onto the pore surface of the entrapped Al(2)O(3) support particulates by a stepwise incipient wetness impregnation method. The microfibrous structure took advantage of a large void volume, entirely open structure, high heat/mass transfer, high permeability, good thermal stability, and unique form factors. Addition of ceria significantly promoted the low-temperature activity of Ni/Al(2)O(3) catalyst particulates incorporated into the micorfibrous structure. The use of fine particles of catalyst significantly attenuated the intraparticle mass transport limitations. As a result, the present novel microfibrous composite bed reactor provided excellent activity and structure stability in ammonia decomposition, as well as low pressure drop and high efficiency reactor design. At a 90% conversion of a 145 sccm ammonia feed rate, the microfibrous entrapped Ni/CeO(2)-Al(2)O(3) catalyst composite bed could provide a 4-fold reduction of catalytic bed volume and a 5-fold reduction of catalytic bed weight (or 9-fold reduction of catalyst dosage), while leading to a reduction of reaction temperature of 100 degrees C, compared to a packed bed with 2 mm dia. Ni/CeO(2)-Al(2)O(3) catalyst pellets. This composite bed was capable of producing roughly 22 W of hydrogen power, with an ammonia conversion of 99% at 600 degrees C in a bed volume of 0.5 cm(3) throughout a 100 h continuous test. These initial and promising results established that the microfibrous nickel-based catalyst composites were effective for high efficiency production of hydrogen by ammonia decomposition, while achieving a significant reduction of overall catalytic bed weight and volume. We anticipate our assay to be a new point for small-scale hydrogen production, where the microfibrous catalytic reactors considered in isolation can satisfy several of the most fundamental criteria needed for useful operation.  相似文献   

12.
Ionic‐liquid‐containing polymer films were prepared by swelling poly(ethylene glycol)‐based networked polymers having lithium salt structures with an ionic liquid, 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI), or with an EMImFSI solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Their fundamental physical properties were investigated. The networked polymer films having lithium salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonate or lithium 3‐(glycidyloxypropanesulfonyl)(trifluoromethanesulfonyl)imide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained ionic‐liquid‐containing films were flexible and self‐standing. They showed high ionic conductivity at room temperature, 1.16–2.09 S/m for samples without LiTFSI and 0.29–0.43 S/m for those with 10 wt % LiTFSI. Their thermal decomposition temperature was above 220 °C, and melting temperature of the ionic liquid incorporated in the film was around ?16 °C. They exhibited high safety due to good nonflammability of the ionic liquid. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Chiral bisphosphazides complexed with lithium salts efficiently catalyze the direct enantioselective 1,4-addition of dialkyl malonates to acyclic enones. Spectroscopic studies on the stoichiometry of the bisphosphazide and lithium salt have indicated the formation of a 1:1 species as the active enantioselective catalyst. It is suggested that the catalyst generates a complex of the protonated phosphazide and the chiral nucleophile as the key intermediate. The phosphazide moiety appears to be a promising dual basic functionality for stereo- and chemoselective catalytic transformations.  相似文献   

14.
Lithium hydride (LiH) has a strong effect on iron leading to an approximately 3 orders of magnitude increase in catalytic ammonia synthesis. The existence of lithium–iron ternary hydride species at the surface/interface of the catalyst were identified and characterized for the first time by gas‐phase optical spectroscopy coupled with mass spectrometry and quantum chemical calculations. The ternary hydride species may serve as centers that readily activate and hydrogenate dinitrogen, forming Fe‐(NH2)‐Li and LiNH2 moieties—possibly through a redox reaction of dinitrogen and hydridic hydrogen (LiH) that is mediated by iron—showing distinct differences from ammonia formation mediated by conventional iron or ruthenium‐based catalysts. Hydrogen‐associated activation and conversion of dinitrogen are discussed.  相似文献   

15.
报导了酞菁钴负载到CuxS和CdS半导体办面合成的一种新型光催化剂,并对其光催化分解H2S的活性进行了考察,同时研究了酞菁 钴分子与半导体相互作用及其对催化性能的影响,实验结果表明,CoPc的负载能够显著提高复合硫化物催化剂光解H2S的活性,在一定条件下,能使反应速率提高2-3倍,活性的增加与CoPc加入量呈现非线性关系,且制备过程不同,催化剂活性的变化规律也不同。先负载到CuxS表面表现出更为明  相似文献   

16.
《Analytical letters》2012,45(10):951-960
Abstract

An analytical system for measuring total nitrogen and its isotopic abundance in a variety of environmental samples has been developed. A reductive pyrolysis system and a directional focusing 6-inch gas mass spectrometer were combined into the analytical system. In the reductive part of the system, nitrogen species are converted to ammonia with an atmosphere of hydrogen in the presence of a heated nickel catalyst. Five percent of the gas stream is split away for measuring total nitrogen by a conductivity detector. The ammonia is removed from the gas stream employing a cold finger reaction vessel.

The hydrogen-free ammonia is decomposed thermally to nitrogen and hydrogen at 1000°C, employing a hot rhenium filament. The N2 produced from the decomposition is used for measuring the abundance of masses 28 and 29 by mass spectrometry. From this ratio, the 15N atom fraction is calculated.

Standard samples of N2, ammonia, orchard leaves and urea have been successfully analyzed to determine isotopic compositions. Samples containing as little as 20 μg of total nitrogen can be analyzed by this system. By the addition of multi-reaction vessels, three samples may be completed per hour.  相似文献   

17.
The reaction of the anhydride of exo-cis-bicyclo[3,3,0]octane-2,4-dicarboxylic acid with ammonia followed by the reduction of the resulting imide with lithium aluminum hydride has yielded 3-azatricyclo[5,3,0,11,5]undecane, from which a number of quaternary bisammonium salts have been obtained with dihaloalkanes. These salts have also been synthesized from the anhydride of exo-cis-bicyclo[3,3,0] octane-2,4-dicarboxylic acid and polymethylenediamines.  相似文献   

18.
Influence of chemical composition of nanocrystalline iron’s surface on its activity in the nitriding process of iron and catalytic decomposition of ammonia was studied. The rate of the nitriding reaction was measured by the thermogravimetric method using a tubular differential reactor. Hydrogen concentration in the reactor was also measured. The rate of the catalytic decomposition of ammonia was determined using the reactor’s mass balance. Experiments were conducted at different temperatures within the range from 300°C to 525°C. Iron catalyst for ammonia synthesis was studied. Two sorts of samples with a different content of potassium oxide (0.16 mass % and 0.64 mass % of K2O) were used. The composition of samples from the second group was modified by an addition of different amounts of sulfur. At temperatures above 400°C, when the effect of ammonia decomposition on the gas phase composition was experimentally measured, the presence of potassium and sulfur on the iron surface influenced the rate of the iron nitriding process. The ammonia decomposition rate was higher for samples with a greater amount of potassium. The rate of reactions depended also on the sulfur concentration and dropped when the sulfur content increased. The value of apparent activation energy of ammonia decomposition was in the range of 150 kJ mol−1 to 180 kJ mol−1 while the content of sulfur in the samples increased.  相似文献   

19.
用湿式浸渍法制备了不同贵金属质量分数的镍-铱双金属催化剂,以氨分解为模型反应对其催化性能进行考察.结果表明,贵金属铱的添加提高了10%Ni/γ-Al2O3的低温活性.在铱的质量分数不高于1%时,氨分解反应活性随铱质量分数的增加出现最大值(相应的Ir质量分数为0.7%),对应的10%Ni-0.7%Ir/γ-Al2O3催化剂在400 ℃时,氨分解率为43.55%,较单组分的Ni催化剂高40.0%.用H2-TPR、H2-TPD 、BET和XRD表征方法对催化剂进行了表征.结果表明,Ir与活性组分Ni之间存在协同作用.铱的添加促进了活性组分的分散、减小了镍的晶粒尺寸,且增加了催化剂活性位的数量,从而提高了催化剂的氨分解性能.  相似文献   

20.
We combine the supramolecular chemistry of heterocyclic ureas with the chemistry of epoxides to synthesize new crosslinked materials incorporating both chemical and supramolecular hydrogen‐bonded links. A two‐step facile and solvent‐free procedure is used to obtain chemically and thermally stable networks from widely available ingredients: epoxy resins and fatty acids. The density of both chemical and physical crosslinks is controlled by the stoichiometry of the reactants and the use of a proper catalyst to limit side reactions. Depending on the stoichiometry, a wide range of thermomechanical properties can be attained. The method can be used to produce elastomeric objects of complex shapes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1133–1141, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号