首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
Computation offloading in mobile edge computing (MEC) systems emerges as a novel paradigm of supporting various resource-intensive applications. However, the potential capabilities of MEC cannot be fully unleashed when the communication links are blocked by obstacles. This paper investigates a double-reconfigurable-intelligent-surfaces (RISs) assisted MEC system. To efficiently utilize the limited frequency resource, the users can partially offload their computational tasks to the MEC server deployed at base station (BS) by adopting non-orthogonal multiple access (NOMA) protocol. We aim to minimize the energy consumption of users with limited resource by jointly optimizing the transmit power of users, the offloading fraction of users and the phase-shifts of RISs. Since the problem is non-convex with highly coupled variables, the block coordinate descent (BCD) method is leveraged to alternatively optimize the decomposed four subproblems. Specifically, we invoke successive convex approximation for low complexity (SCALE) and Dinkelbach technique to tackle the fractional programming of power optimization. Then the offloading fraction is obtained by closed-form solution. Further, we leverage semidefinite relaxation (SDR) and bisection method to address the phase-shifts design of double RISs. Finally, numerical results illustrate that the proposed double-RIS assisted NOMA scheme is capable of efficiently reducing the energy consumption and achieves significant performance gain over the benchmark schemes.  相似文献   

3.
Vehicle-to-everything (V2X) communication aims to achieve significantly improved safety and traffic efficiency, more particularly at road intersection where high percentage of accidents usually occur. The existing vehicular radio frequency (V-RF) based V2X utilizes relaying for improving safety message dissemination at road intersections. For a high traffic density scenario, the V-RF communication with relaying solution may suffer from large latency and low packet delivery rates due to channel congestion. In this paper, we explore cooperative non-orthogonal multiple access (NOMA) communication assisted hybrid vehicular visible light communication (V-VLC) and V-RF communication for improving safety message dissemination and enabling massive connectivity among vehicles for road intersection scenarios. We develop a stochastic geometry based analytical framework to model cooperative NOMA (C-NOMA) transmissions subject to interference imposed by other vehicles on roads. We also examine the impact of vehicles headlights radiation pattern viz. Lambertian and empirical path loss models on statistical characterization of the proposed C-NOMA supported hybrid solution. Our numerical findings reveal that C-NOMA assisted hybrid V-VLC/V-RF system leads to considerable improvement in outage performance and average achievable rate as compared to traditional V-RF solution with relaying. Interestingly, Lambertian model offers a lower outage and higher average achievable rate compared to the empirical model for the proposed hybrid solution. Further, we observe the performance improvement using maximal ratio combining (MRC) considering NOMA transmission for the proposed hybrid solution. The presented framework may serve as an alternative for cooperative intelligent transportation system (C-ITS) to meet diverse application needs for beyond 5G (B5G) V2X networks.  相似文献   

4.
This work investigates the physical layer secrecy performance of a hybrid satellite/unmanned aerial vehicle (HS-UAV) terrestrial non-orthogonal multiple access (NOMA) network, where one satellite source intends to make communication with destination users via a UAV relay using NOMA protocol in the existence of spatially random eavesdroppers. All the destination users randomly distributed on the ground comply with a homogeneous Poisson point process in the basis of stochastic geometry. Adopting Shadowed-Rician fading in satellite-to-UAV and satellite-to-eavesdroppers links while Rayleigh fading in both UAV-to-users and UAV-to-eavesdroppers links, the theoretical expressions for the secrecy outage probability (SOP) of the paired NOMA users are obtained based on the distance-determined path-loss. Also, the asymptotic behaviors of SOP expressions at high signal-to-noise ratio (SNR) regime are analyzed and the system throughputs of the paired NOMA users are examined for gaining further realization of the network. Moreover, numerical results are contrasted with simulation to validate the theoretical analysis. Investigation of this work shows the comparison of SOP performance for the far and near user, pointing out the SOP performance of the network depends on the channel fading, UAV coverage airspace, distribution of eavesdroppers and some other key parameters.  相似文献   

5.
The demand for high data rate, security and reliable communication is driving the development of free space optic communication (FSO) technology. The atmospheric effects such as scintillation, absorption and scattering severely affect the availability and range of the FSO system. The atmospheric rain absorbs and scatters the laser beam energy resulting in attenuation of the propagating signal. Initial development of FSO technology primarily used wavelength from infrared spectrum. In the recent years, the interest in visible light carrier for FSO applications is consistently increasing. In this paper, the effect of rain over two optical wavelengths from the visible spectrum i.e. 532 nm and 655 nm has been experimentally evaluated and results for the specific rain attenuation at 532 nm and 655 nm wavelengths have been compared.  相似文献   

6.
Nanostructured ZnO thin films with different concentrations of Ni2+ doping (0, 1, 5, 10 and 15 wt.%) are prepared by the sol-gel method for the first time. The thin films are prepared from zinc acetate, 2-methoxyethanol and monoethanolamine on glass substrates by using dip coating method. The films comprise of ZnO nanocrystallites with hexagonal crystal structure, as revealed by X-ray diffraction. The film surface is with characteristic ganglia-like structure as observed by Scanning Electron Microscopy. Furthermore, the Ni-doped films are tested with respect to the photocatalysis in aqueous solutions of malachite green upon UV-light illumination, visible light and in darkness. The initial concentration of malachite green and the amount of catalyst are varied during the experiments. It is found that increasing of the amount of Ni2+ ions with respect to ZnO generally lowers the photocatalytic activity in comparison with the pure ZnO films. Nevertheless, all films exhibit a substantial activity under both, UV and visible light and in darkness as well, which is promising for the development of new ZnO photocatalysts by the sol-gel method.  相似文献   

7.
Photocatalytic removal of Cr6+ from aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation was studied in this work. First, nanoscale ZnO was prepared by the co-precipitation method. Then, sensitization of nanoscale ZnO by Alizarin Red S dye followed. Further, nanoscale ZnO and dye-sensitized nanoscale ZnO (designated nanoZnO and nanoZnO*, respectively) were both characterized by various photospectrometry methods, such as scanning electron microscopy (SEM), scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS), EDS-mapping, transmission electron microscopy (TEM), and X-ray diffractometry (XRD). It was found that both types of prepared particles are spherical in shape with a size range of 20 to 50 nm. XRD patterns showed that both nanoZnO and nanoZnO* had the same crystalline structure of zincite. In the photocatalytic reduction aspect, effects of different light sources and dosage of nanoZnO* on Cr6+ reduction ([Cr6+]initial = 20 mg/L) were evaluated in this work. Treatment of chromium(VI)-bearing wastewater under the conditions of using 1.0 g/L of nanoZnO*, neutral pH, irradiation of household fluorescence lamps for 6 h and 17 h would yield Cr6+ removal efficiencies of about 68% and 90%, respectively. When the household fluorescence lamps were replaced by visible-light lamps of 400–500 nm in wavelength, the corresponding removal efficiencies dropped to about 50% and 75%, respectively. When nanoZnO* was irradiated by sunlight under almost the same experimental conditions, the Cr6+ reduction efficiency increased up to 90%. In summary, sensitizing nanoscale ZnO with Alizarin Red S dye for photocatalytic applications using visible light is feasible. The relevant reaction mechanism and pathways were also proposed in this work.  相似文献   

8.
提出了一种基于数字微反射镜(DMD)微光刻的导光模板的制作方法.导光板的网点单元图形由DMD输入,经过缩微光学成像系统缩微后,在光刻胶干板上逐单元网点曝光,再经过显影、微电铸得到导光板模板,在PC薄板材上用微纳米压印制成导光板,厚度仅为0.381 mm.采用自行研制的SVGwriting-DMD激光直写系统,图形的最小分辨率为2 μm,DMD微光刻法无需掩膜版,可实现不同形状、大小、微结构的单元网点图形及网点的排布,便于大幅面的导光板模板的制作.  相似文献   

9.
利用空间光调制器与CCD摄像机,取代传统的光刻掩膜板及白屏,构建成新型光衍射与干涉定量实验系统,将PC机软件绘制的狭缝小孔等衍射图案传输至空间光调制器,用CCD接收其远场衍射和干涉图样,再用PC机处理图像,做定量分析.可验证狭缝和圆孔衍射公式;对形状和空间关系复杂的异形孔,也可方便地实现衍射干涉图样的观察存储与测算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号