首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Introducing fluorine into molecules has a wide range of effects on their physicochemical properties, often desirable but in most cases unpredictable. The fluorine atom imparts the C–F bond with low polarizability and high polarity, and significantly affects the behavior of neighboring functional groups, in a covalent or noncovalent manner. Here, we report that fluorine, present in the form of a single fluoroalkyl amino acid side chain in the P1 position of the well-characterized serine-protease inhibitor BPTI, can fully restore inhibitor activity to a mutant that contains the corresponding hydrocarbon side chain at the same site. High resolution crystal structures were obtained for four BPTI variants in complex with bovine β-trypsin, revealing changes in the stoichiometry and dynamics of water molecules in the S1 subsite. These results demonstrate that the introduction of fluorine into a protein environment can result in “chemical complementation” that has a significantly favorable impact on protein–protein interactions.  相似文献   

2.
One of the most successful approaches for balancing the high stability and activity of water oxidation in alkaline solutions is to use amorphous and crystalline heterostructures. However, due to the lack of direct evidence at the molecular level, the nano/micro processes of amorphous and crystalline heterostructure electrocatalysts, including self-reconstruction and reaction pathways, remain unknown. Herein, the Leidenfrost effect assisted electrospray approach combined with phase separation was used for the first time to create amorphous NiOx/crystalline α-Fe2O3 (a-NiOx/α-Fe2O3) nanowire arrays. The results of in situ Raman spectroscopy demonstrate that with the increase of the potential at the a-NiOx/α-Fe2O3 interface, a significant accumulation of OH can be observed. Combining with XAS spectra and DFT calculations, we believe that more OH adsorption on the Ni centers can facilitate Ni2+ deprotonation to achieve the high-valence oxidation of Ni4+ according to HSAB theory (Fe3+ serves as a strong Lewis acid). This result promotes the electrocatalysts to follow the lattice oxygen activation mechanism. This work, for the first time, offers direct spectroscopic evidence for deepening the fundamental understanding of the Lewis acid effect of Fe3+, and reveals the synergistic effect on water oxidation via the unique amorphous and crystalline heterostructures.

The amorphous NiOx/crystalline α-Fe2O3 heterojunctions were constructed and exhibited outstanding OER activities. Through the collaboration of multiple characterization techniques, the Lewis acid effect of Fe3+ was revealed at molecular level.  相似文献   

3.
Sr掺杂钙钛矿体系中高活性氧析出反应机制(英文)   总被引:1,自引:0,他引:1  
析氧反应(oxygen evolutionreaction OER)是电催化分解水、二氧化碳还原、金属-空气电池以及燃料电池等能源转化及存储技术的关键过程,因此被广泛关注和研究.OER过程涉及四个电子转移,是动力学迟滞过程,具有较大的过电位,此外OER催化反应的同时也可能改变电极表面状态,故其机理的研究十分困难.设计和开发高效OER催化剂材料是提高电解水效率的关键.最近的研究发现反应后催化剂表面会发生重构,进而形成无定形层,该无定形层被认为会改善催化活性.我们的前期研究也发现了表面不饱和配位无定形层的存在,但对于重构机制尚没有明确的解释.本文在上述研究基础上,利用熔盐法合成了一系列具有多孔结构的不同Sr含量的LaCo0.8Fe0.2O3-δ钙钛矿材料,通过电化学装置测试其催化活性,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、比表面积测试(BET)和软硬X射线吸收谱技术等表征手段对其进行了深入探索.XRD测试结果表明,Sr掺杂LaCo0.8Fe0.2O3-δ钙钛矿材料的主峰随着Sr含量增加向低角度偏移,这是由于Sr的离子半径较La的大.SEM和BET测试结果表明,不同Sr含量样品均表现出多孔的钙钛矿结构,并具有相似的比表面积,说明Sr含量变化不影响催化剂的形貌和比表面积.利用硬X射线吸收谱对体相Co和Fe元素的价态进行了研究,发现随着Sr含量的增加,Co和Fe离子的价态没有明显变化.类似地,利用软X射线吸收谱对表面层Co和Fe价态进行的研究发现,Co和Fe均表现出+3价,但在氧元素的K边吸收谱上观察到明显的氧空穴存在.电化学测试结果表明,催化剂的活性随Sr含量增加而增大.总之,随着Sr的掺杂,催化剂形貌及活性元素价态均无明显变化,但样品的电化学性能却发生了明显改善,这意味着尚有其它因素影响催化剂活性.利用HRTEM对OER反应前后的样品进行了形貌分析,发现在OER反应后Sr掺杂的催化剂表面出现了明显的无定形层,而无Sr掺杂的样品反应前后几乎未观察到表面形貌的变化.由此我们推断,Sr掺杂可诱导催化剂表面出现无定形层,进而提高OER反应活性.因此,在LaCo0.8Fe0.2O3-δ钙钛矿材料体系中,Sr掺杂是影响OER催化剂表面重构和制约催化活性的关键.  相似文献   

4.
We report on the successful synthesis and hyperpolarization of N-unprotected α-amino acid ethyl propionate esters and extensively, on an alanine derivative hyperpolarized by PHIP (4.4 ± 1.0% 13C-polarization), meeting required levels for in vivo detection. Using water as solvent increases biocompatibility and the absence of N-protection is expected to maintain biological activity.  相似文献   

5.
Metal-free photocatalytic hydrogen evolution occurred efficiently in benzene containing single-walled carbon nanotubes under laser irradiation at 532 nm with an extremely high turnover number of 2 000 000 and a high quantum yield of 130%. The rate of hydrogen evolution increased with increasing laser intensity to exhibit a fourth power dependence, suggesting that hydrogen was evolved via four-photon processes in which the coupling of two radical anions derived from benzene is the rate-determining step and the benzene radical anion is produced by electron transfer from benzene to the doubly excited state of single-walled carbon nanotubes, which requires two photons. Polymerisation of benzene was induced by the photogenerated C6H6˙, accompanied by hydrogen evolution, resulting in a leverage effect to increase the quantum yield of hydrogen evolution to well over the 25% expected for the four-photon process. Laser-induced hydrogen evolution also occurred in water containing single-walled carbon nanotubes. In contrast to the case of benzene, water was not oxidized but hydrogen evolution from water was accompanied by the multi-oxidation of single-walled carbon nanotubes. The yield of hydrogen based on one mole of single-walled carbon nanotubes with 1.4 nm diameter and 1–5 mm length was determined to be 2 700 000%, when oxidations of single-walled carbon nanotubes occurred to produce the polyhydroxylated product.  相似文献   

6.
Nanostructured Pt-metal alloys have shown impressive catalytic properties for the oxygen reduction reaction (ORR) in acidic medium, but their long-term stability has not been satisfactory. Herein, we look beyond the traditional Pt-metal alloys and have developed a new kind of Pt-nonmetal alloy electrocatalyst for the ORR. Specifically, the novel catalyst is composed of interconnected platinum monophosphide (PtP) alloy nanocrystals (∼3–4 nm) and featured supportless nanotube array morphologies. Due to the unique combination of composition and structure, the obtained PtP alloy nanotube arrays not only exhibited remarkable ORR activity, but also showed almost no degradation of the half-wave potential after accelerated durability tests. The result suggests that alloying Pt with a nonmetallic element (such as P) is indeed an effective approach to address the poor stability of Pt-based catalysts in acidic medium.  相似文献   

7.
The evolution of the intracellular caspase family is crucial in cell apoptosis. To evaluate this process, a universal platform of in situ activation and monitoring of the evolution of intracellular caspase is designed. Using well-known gold nanostructure as a model of both nanocarrier and matter inducing the cell apoptosis for photothermal therapy, a nanoprobe is prepared by assembly of two kinds of dye-labelled peptides specific to upstream caspase-9 and downstream caspase-3 as the signal switch, and folic acid as a targeting moiety. The energy transfer from dyes to the gold nanocarrier at two surface plasmon resonance absorption wavelengths leads to their fluorescence quenching. Upon endocytosis of the nanoprobe to perform the therapy against cancer cells, the peptides are successively cleaved by intracellular caspase activation with the evolution from upstream to downstream, which lights up the fluorescence of the dyes sequentially, and can be used to quantify both caspase-9 and caspase-3 activities in cancer cells and to monitor their evolution in living mice. The recovered fluorescence could also be used to assess therapeutic efficiency. This work provides a novel powerful tool for studying the evolution of the intracellular caspase family and elucidating the biological roles of caspases in cancer cell apoptosis.  相似文献   

8.
Nickel-iron layered double hydroxides(NiFe LDHs) have been identified as one of the best promising electrocatalysts-candidates for oxygen evolution reaction(OER). However, the catalytic activity effected by interlayer water molecules is ignored and rarely reported. Herein, Ni(OH)_2, NiFe LDHs vertically aligned Ni foam are designed for OER. As a contrast, the corresponding electrocatalysts with the removal of the interlayer water molecules(Ni(OH)_2-AT, NiFe LDHs-AT) are developed to probe into the influence of the interlayer water molecules towards OER. As expected, NiFe LDH nanoplates exhibit excellent catalytic performance and durability for water electrolysis in alkaline conditions with lower overpotential and smaller Tafel slope compared to those of NiFe LDHs-AT, which are influenced mainly by stability of crystal structure due to the existence of interlayer water molecules. The discovery opens up a similar pathway by controlling the amount of water molecules to boost catalytic performance for studying other electrocatalysts with heteroatom dopant.  相似文献   

9.
在质子交换膜燃料电池中,金属铂是最高效的阴极氧还原催化剂之一,但是铂昂贵的价格严重阻碍了其在燃料电池领域中的大规模商业化应用.通过铂与3d过渡金属(Fe、Co和Ni)合金化可以有效提高催化剂的氧还原活性,然而在实际的高腐蚀性、高电压和高温的燃料电池运行环境中,铂合金纳米粒子易发生溶解、迁移和团聚,从而导致催化剂耐久性差.同时过渡金属离子的溶出会影响质子交换膜的质子传导,并且一些过渡金属离子会催化芬顿反应,产生高腐蚀性?OH自由基,加快Nafion和催化剂的劣化.与过渡金属掺杂相比,非金属掺杂具有明显优势:一方面,非金属溶出产生的阴离子不会取代Nafion中的质子,也不会催化芬顿反应;另一方面,与3d过渡金属相比,非金属具有更高的电负性,其掺杂很容易调节Pt的电子结构.因此,本文通过非金属磷掺杂合成具有优异稳定性的核壳结构PtPx@Pt/C氧还原催化剂.通过热处理磷化商业碳载铂形成磷化铂(PtP2),经由酸洗处理产生富铂壳层,即PtPx@Pt/C.X射线粉末多晶衍射结果证明了PtP2相的存在,并且进一步通过电子能量损失谱对纳米粒子进行微区面扫描分析以及X射线光电子能谱分析证实了富铂壳层的存在,壳层厚度约1 nm.得益于核壳结构及磷掺杂引起的电子结构效应,PtP1.4@Pt/C催化剂在0.90 V(RHE)时的面积活性(0.62 mA cm–2)与质量活性(0.31 mAμgPt–1)分别是商业Pt/C的2.8倍和2.1倍.更重要的是,在加速耐久性测试中,PtP1.4@Pt/C催化剂在30000圈电位循环后质量活性仅衰减6%,在90000圈电位循环后仅衰减25%;而商业Pt/C催化剂在30000圈电位循环后就衰减46%.PtP1.4@Pt/C催化剂高活性与高稳定性主要归功于核壳结构、磷掺杂引起的电子结构效应以及磷掺杂增加了碳载体对催化剂粒子的锚定作用进而阻止了其迁移团聚.综上所述,本文为设计同时具有优异活性与稳定性非金属掺杂Pt基氧还原催化剂提供新的思路.  相似文献   

10.
Bacteria use a communication system, called quorum sensing (QS), to organize into communities and synchronize gene expression to promote virulence and secure survival. Here we report on a proof-of-principle for externally interfering with this bacterial communication system, using light. By employing photoswitchable small molecules, we were able to photocontrol the QS-related bioluminescence in an Escherichia coli reporter strain, and the expression of target QS genes and pyocyanin production in Pseudomonas aeruginosa.  相似文献   

11.
Many existing irrigation, industrial and chemical storage sites are currently introducing hazardous anions into groundwater, making the monitoring of such sites a high priority. Detecting and quantifying anions in water samples typically requires complex instrumentation, adding cost and delaying analysis. Here we address these challenges by development of an optical molecular method to detect and discriminate a broad range of anionic contaminants with DNA-based fluorescent sensors. A library of 1296 tetrameric-length oligodeoxyfluorosides (ODFs) composed of metal ligand and fluorescence modulating monomers was constructed with a DNA synthesizer on PEG-polystyrene microbeads. These oligomers on beads were incubated with YIII or ZnII ions to provide affinity and responsiveness to anions. Seventeen anions were screened with the library under an epifluorescence microscope, ultimately yielding eight chemosensors that could discriminate 250 μM solutions of all 17 anions in buffered water using their patterns of response. This sensor set was able to identify two unknown anion samples from ten closely-responding anions and could also function quantitatively, determining unknown concentrations of anions such as cyanide (as low as 1 mM) and selenate (as low as 50 μM). Further studies with calibration curves established detection limits of selected anions including thiocyanate (detection limit ∼300 μM) and arsenate (∼800 μM). The results demonstrate DNA-like fluorescent chemosensors as versatile tools for optically analyzing environmentally hazardous anions in aqueous environments.  相似文献   

12.
Complex chemical reactions can occur in electrosprayed droplets on the millisecond time scale. The Hantzsch synthesis of 1,4-dihydropyridines was studied in this way using on-line mass spectral analysis to optimize conditions and characterize the product mixture. Changing the distance between the nanospray source and the MS inlet allowed exploration of reaction progress as a function of droplet time-of-flight. Desolvation of the charged microdroplets is associated with transformation from starting material to intermediates and eventually to product as the distance is increased. Results of the on-line experiments require a termination step that discontinuously completes the desolvation process and allows the generated gaseous ions to be used to characterize the state of the system at a particular time. The intermediates seen correspond to those known to occur in the bulk solution-phase reaction. Off-line collection of the sprayed reaction mixture allowed the recovery of 250 mg h–1 of desired reaction product from a single sprayer, permitting characterization by NMR and other standard methods. A thin film version of the accelerated reaction is described and it could be controlled through the temperature of the collection surface.  相似文献   

13.
The protein/ligand docking software GOLD, which was originally developed for drug discovery, has been used in a virtual screen to identify small molecules that bind with extremely high affinities (K ≈ 107 M–1) in the cavity of a cubic coordination cage in water. A scoring function was developed using known guests as a training set and modified by introducing an additional term to take account of loss of guest flexibility on binding. This scoring function was then used in GOLD to successfully identify 15 new guests and accurately predict the binding constants. This approach provides a powerful predictive tool for virtual screening of large compound libraries to identify new guests for synthetic hosts, thereby greatly simplifying and accelerating the process of identifying guests by removing the reliance on experimental trial-and-error.  相似文献   

14.
Nanocomposites consisting of the bimetallic carbide Co(6)Mo(6)C(2) supported on graphitic carbon ((g)C) were synthesized in situ by an anion-exchange method for the first time. The Co(6)Mo(6)C(2)/(g)C nanocomposites were not only chemically stable but also electrochemically stable. The catalyst prepared by loading Pt nanoparticles onto Co(6)Mo(6)C(2)/(g)C was evaluated for the oxygen reduction reaction in acidic solution and showed superior activity and stability in comparison with commercial Pt/C. The higher mass activity of the Pt-Co(6)Mo(6)C(2)/(g)C catalyst indicated that less Pt would be required for the same performance, which in turn would reduce the cost of the fuel cell electrocatalyst. The method reported here will promote broader interest in the further development of other nanostructured materials for real-world applications.  相似文献   

15.
Journal of Solid State Electrochemistry - A hybrid titanium chromium nitride nanotube (Ti0.95Cr0.05N NT) support was prepared by a facile synthesis procedure and further used as support for Pt...  相似文献   

16.
We report here that size- and shape-focusing can be achieved through the well-known Ostwald ripening process to produce high-quality metal nanocrystals (NCs). Using Pd as an example, we show that the addition of small NCs of appropriate sizes could help in modulating the growth of larger NCs and enable excellent control over both the size and shape uniformity of the products. A detailed mechanistic study showed that the self-focusing of Pd NCs relied on a dissolution and regrowth process induced by redox reaction of HCHO. With the assistance of HCHO, injection of small sacrificial nanocrystals (SNCs), with sizes below a critical value, into larger seeds results in the dissolution of the SNCs and subsequent deposition onto the larger ones, thus allowing the formation of monodisperse Pd NCs. We have identified the critical radius of the SNCs to be ∼5.7 nm for Pd, and verified that SNCs with sizes larger than that could not effectively support the growth of larger seeds. More interestingly, since Ostwald ripening involves matter relocation, this synthetic approach could even break the self-termination growth habits of metal NCs and produce nanocrystals with sizes that are not conveniently accessible by direct growth.  相似文献   

17.
Recently Debe et al. reported that Pt3Ni7 leads to extraordinary Oxygen Reduction Reaction (ORR) activity. However, several reports show that hardly any Ni remains in the layers of the catalysts close to the surface (“Pt-skin effect”). This paradox that Ni is essential to the high catalytic activity with the peak ORR activity at Pt3Ni7 while little or no Ni remains close to the surface is explained here using large-scale first-principles-based simulations. We make the radical assumption that processing Pt–Ni catalysts under ORR conditions would leach out all Ni accessible to the solvent. To simulate this process we use the ReaxFF reactive force field, starting with random alloy particles ranging from 50% Ni to 90% Ni and containing up to ∼300 000 atoms, deleting the Ni atoms, and equilibrating the resulting structures. We find that the Pt3Ni7 case and a final particle radius around 7.5 nm lead to internal voids in communication with the exterior, doubling the external surface footprint, in fair agreement with experiment. Then we examine the surface character of these nanoporous systems and find that a prominent feature in the surface of the de-alloyed particles is a rhombic structure involving 4 surface atoms which is crystalline-like but under-coordinated. Using density-functional theory, we calculate the energy barriers of ORR steps on Pt nanoporous catalysts, focusing on the Oad-hydration reaction (Oad + H2Oad → OHad + OHad) but including the barriers of O2 dissociation (O2ad → Oad + Oad) and water formation (OHad + Had → H2Oad). We find that the reaction barrier for the Oad-hydration rate-determining-step is reduced significantly on the de-alloyed surface sites compared to Pt(111). Moreover we find that these active sites are prevalent on the surface of particles de-alloyed from a Pt–Ni 30 : 70 initial composition. These simulations explain the peak in surface reactivity at Pt3Ni7, and provide a rational guide to use for further optimization of improved catalytic and nanoporous materials.  相似文献   

18.
燃料电池是一种可将化学能通过电催化反应直接转化成电能的装置,具有能量密度高和清洁无污染等优点.燃料电池阴极氧还原反应(ORR)的动力学较迟缓,是电池能量效率损失的主要原因.目前ORR催化活性最高的是铂基催化剂,但由于贵金属铂价格昂贵,储量稀少,且对燃料小分子渗透的抗性较差,严重制约了燃料电池的大规模应用.因此,高性能、低成本的非贵金属催化剂成为燃料电池领域的研究热点.本文选用含氮量高达45%的三聚氰胺-甲醛树脂为碳源和氮源,Fe(SCN)3为铁源和硫源,以CaCl2为模板,在高温和铁的催化作用下将树脂碳化,经酸洗和二次热处理工艺,制备出铁、氮、硫共掺杂的多孔碳(FeNS-PC).干燥后的CaCl2颗粒可防止树脂在高温下交联形成块状碳颗粒,同时起到造孔模板的作用.CaCl2颗粒在温和条件下即可除去,无需强腐蚀性条件,因此不会对催化活性中心造成破坏.在Fe/N/C催化剂中掺杂S可进一步提高催化活性,不添加碳载体可避免低活性的碳载体降低质量活性,多孔结构可促进传质,充分利用活性位点.我们优化了热处理温度,并对催化剂的结构、组分及催化性能等进行了表征分析.结果表明,热处理温度为900℃时,可将树脂完全转化成多孔碳,并获得较高的杂原子掺杂量,可达到最优活性.CaCl2为模板剂可避免使用强腐蚀性试剂去除模板,有利于保留活性位,并得到多孔结构.FeNS-PC-900的比表面积可达775 m2/g.得益于原位掺杂的合成工艺,各掺杂元素在多孔碳表面均匀分布.在酸性介质中,FeNS-PC-900的半波电位可达到0.811V,仅比商业Pt/C催化剂低78 mV;在0.8V电位下的质量活性为10.2 A/g,表现出优异的催化活性.经过10000圈加速衰减测试后,其半波电位仅下降了20 mV,在0.75V电位下持续放电10000s后,其ORR电流仍保持初始电流的84.4%,具有比Pt/C更加优异的稳定性.以FeNS-PC-900为阴极催化剂的质子交换膜燃料电池的最大功率密度可达到0.49 W/cm2,并在0.6V电压下持续放电10h后,其电流仍可保持初始电流的65%,表现出良好的应用潜力.FeNS-PC-900具有高掺杂含量、高比表面积和多孔结构,并且杂原子在催化剂表面均匀分散,在半电池和燃料电池测试中都表现出优异的催化活性和稳定性,表明其是一种非常有潜力应用于燃料电池的非贵金属氧还原催化剂.  相似文献   

19.
The factors controlling the electrocatalytic activity for the oxygen reduction reaction (ORR) in fuel cells have been tuned and investigated systematically with the low cost carbon-supported Pd70Co30 nanoalloy. The catalytic activity decreases with increasing annealing temperature due to an increasing degree of alloying (Co content in the Pd lattice) and crystallite size. With a controlled crystallite size of ∼8 nm, the activity is found to decrease with increasing degree of alloying from 18 to 30 at.% Co. However, the catalyst durability increases considerably with annealing temperature due to the alloying of Pd with Co and an increase in crystallite size.  相似文献   

20.
氮掺杂纳米碳块的制备及氧还原的高电化学催化活性   总被引:1,自引:0,他引:1  
面对全球化的能源危机,燃料电池由于其高效性和可重复使用性成为越来越具有潜力的能量转化设备.阴极发生的氧气还原反应对于燃料电池的性能十分重要,寻找高效的氧还原催化剂在很大程度上可以提高燃料电池的性能.传统的氧还原催化剂是贵金属铂,但是铂的价格十分高,较差的稳定性和选择性限制了它的商业化应用,因此找到一种廉价高效的非贵金属氧还原催化剂来代替铂基催化剂成为目前的研究热点.我们最近发现将纯的三羟甲基氨基甲烷置于管式炉中在800°C下真空烧制2 h,可以简单快捷地得到一种含 N量为4.11%的纳米碳块(标记为 NCNBs-800),该材料可用于催化电化学氧气还原反应.同样情况下在700和900°C下合成的材料标记为 NCNBs-700和 NCNBs-900.采用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学旋转圆盘方法与技术对催化剂的成分、形貌和电催化性能进行了表征. SEM表明 NCNBs-800为直径为60 nm的碳块,用 FTIR手段表征了 NCNBs-800的结构变化,三羟甲基氨基甲烷中的–OH和–NH2在高温下发生消去反应,形成了饱和度不同的 C–N键和 C–C键.这些饱和度不同的 N原子和 C原子增加了材料的缺陷结构和活性位点,进一步促进了氧还原反应的催化性能.采用 XPS分析了 NCNBs-800表面的元素,通过对 N 1s进行分峰拟合,发现 NCNBs-800含有能促进氧还原性能的吡啶-N和吡咯-N,特别是吡啶-N,它吸电子的能力很强,从而导致与它邻近的 C原子表面具有一定的正电荷,这些正电荷促进了氧气的吸附和还原,为氧气还原反应提供活性位点,促进氧气还原反应的发生. XRD结果表明,三羟甲基氨基甲烷热解前后的 XRD谱图有明显变化,热解后的三羟甲基氨基甲烷呈现两个宽峰,代表着杂化碳的存在. NCNBs-800的衍射峰强度比 NCNBs-700以及 NCNBs-900大,但是宽度则比 NCNBs-700以及 NCNBs-900小,这表明800°C有利于材料的石墨烯化及碳化过程.电化学阻抗可以表明修饰电极的表面性质,阻抗图中高频处半圆的直径大小代表电子转移阻力,低频处的线性部分代表扩散过程.阻抗数据表明, NCNBs-800的电荷转移电阻可与 Pt/C催化剂相比,但是比裸露的玻碳电极小.这表明 NCNBs-800有较好的导电性和电化学性质. CV曲线表明 NCNBs-800氧还原的起始电位是-0.05 V (vs Ag/AgCl),氧气的还原电位是0.20 V (vs Ag/AgCl),说明 NCNBs-800具有良好的电化学催化性能.旋转环盘电极仪测得的氧还原极化曲线表明,在-0.3 to-0.8 V下的 NCNBs-800氧还原的电子转移数为3.4,过氧化氢产率为52%-35%,表明 NCNBs-800呈现一个提高的四电子过程.稳定性对于燃料电池氧气还原反应也是一个十分重要的性能,通过计时电流技术在电压为-0.2 V下对 NCNBs-800与 Pt/C进行了稳定性测试.结果表明,在2500 s之后 NCNBs-800相对于它的最初催化活性损失为17.56%,而 Pt/C损失了30.71%,从而说明 NCNBs-800的稳定性优于 Pt/C.总之,我们通过一步热解的简易技术制备了一种氮掺杂纳米碳材料,该碳材料具有廉价、高效和容易制备等特点,具有良好的电化学催化性能,有望在燃料电池氧化还原反应中得到大规模应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号