首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
脱氧核酶(DNAzymes)是一类人工合成的通过指数富集式配体系统进化技术(SELEX)筛选得到的具有催化功能的单链DNA分子. 由于DNAzyme具有易于合成和修饰、 化学结构稳定及催化活性高等优点, 近年来在生物传感和医学诊断领域备受关注. 对DNAzyme的活性进行调控是挖掘其多方面应用潜能的关键, 灵活的活性调控方式将促进DNAzyme在不同领域的应用. 本文综合评述了一些调控脱氧核酶活性的主要方法, 并对其在生物医学分析领域方面的应用进行了简要介绍.  相似文献   

2.
G-quadruplex DNAzymes are peroxidase-like complexes formed by nucleic acid G-quadruplexes and hemin. Various chemical sensors and biosensors have been developed, based on such DNAzymes. Here we report a novel, specific nucleic acid detection method utilizing the isothermal amplification strategy of G-quadruplex DNAzymes. In this method, an unlabeled oligonucleotide probe was used. The probing sequence of the oligonucleotide was in the form of a stem-loop structure. A G-rich sequence, containing three GGG repeats, was linked to the 5′-end of the stem-loop structure. In the presence of target, the probing sequence hybridized to the target, and a Gn (n ≥ 2) repeat was extended from its 3′-end. This Gn repeat, together with the three GGG repeats at the 5′-end, folded into a G-quadruplex, and displayed enhanced peroxidase acitivity upon hemin binding. Utilizing the dynamic binding interaction between the probe and its target, the enrichment of G-quadruplex DNAzymes was achieved. Using this method, simple, rapid and cost-effective nucleic acid detection could be achieved. This method displayed high target-length tolerance and good detection specificity; one-base mismatch could be judged easily, even by visual inspection. This method may be used as an auxiliary tool for amplified detection of specific DNA targets in some situations, in which isothermal detection is desirable.  相似文献   

3.
DNAzymes exhibit high potential as gene silencing agents for therapeutic applications. Such purposes, however, are significantly challenged by the targeted and successful delivery of unmodified DNAzymes into cells with minimal side effects. Here, we set out to formulate and demonstrate a new stimuli-responsive and constrained aptamer/DNAzyme (Apt/Dz) catenane nanostructure for highly specific gene silencing. The rational design of the Apt/Dz catenane nanostructure with the respective integration of the aptamer sequence and the completely closed catenane format enables both the targeted capability and significantly improved nuclease resistance, facilitating the stable and targeted delivery of unmodified Dz into cancer cells. Moreover, the Dz enzymatic activity in the constrained structure can only be conditionally regulated by the specific intracellular mRNA sequences to silence the target gene with highly reduced side effects. Results show that the Apt/Dz catenane nanostructure can effectively inhibit the expression of the target gene and the proliferation of cancer cells with high specificity.

The stimuli-responsive and constrained aptamer/DNAzyme catenane nanostructure enables the targeted delivery of native DNAzymes for highly specific gene silencing.  相似文献   

4.
DNAzymes are single stranded DNA molecules that exhibit catalytic activity and are exploited in medicine, biology and material sciences. Development in this area is related to the many advantages of DNAzymes over conventional protein enzymes, such as thermal stability and simpler preparation. DNAzymes with peroxidase-like activity have recently attracted great interest. To assure such catalytic activity, oligonucleotides have to adopt a G-quadruplex structure, which can bind the hemin molecule. This system facilitates a redox reaction between the target molecule and hydrogen peroxide, which results in the appearance of an oxidized target molecule (product). DNAzymes with peroxidase-mimicking activity have great potential in bioanalytical chemistry. This review presents fundamentals concerning the design and engineering of DNAzymes with peroxidase-like activity, describes their properties and spectral characteristics and shows how DNAzymes can contribute to bioanalytical research. Examples of bioanalytical applications of DNAzymes with peroxidase-like activity include nucleic acid probes with DNAzyme labels for the detection of specific DNA sequences in colorimetric or chemiluminescent assays. Assays for telomerase or methyltransferase activity, which are potential targets in anticancer therapy, are also described in this review. Other applications include the determination of metal cations such as Ag(+), K(+), Hg(2+), Pb(2+) or Cu(2+) and amplified detection of small molecules such as adenosine, cocaine or AMP and proteins such as lysozyme or thrombin. In the last decade, DNAzymes have become part of numerous applications in many areas of science from chemistry to biology to medicine.  相似文献   

5.
Weak lignin-binding enzymes   总被引:3,自引:0,他引:3  
Economic barriers preventing commercialization of lignocellulose-to-ethanol bioconversion processes include the high cost of hydrolytic enzymes. One strategy for cost reduction is to improve the specific activities of cellulases by genetic engineering. However, screening for improved activity typically uses “ideal” cellulosic substrates, and results are not necessarily applicable to more realistic substrates such as pretreated hardwoods and softwoods. For lignocellulosic substrates, nonproductive binding and inactivation of enzymes by the lignin component appear to be important factors limiting catalytic efficiency. A better understanding of these factors could allow engineering of cellulases with improved activity based on reduced enzyme-lignin interaction (“weak lignin-binding cellulases”). To prove this concept, we have shown that naturally occurring cellulases with similar catalytic activity on a model cellulosic substrate can differ significantly in their affinities for lignin. Moreover, although cellulose-binding domains (CBDs) are hydrophobic and probably participate in lignin binding, we show that cellulases lacking CBDs also have a high affinity for lignin, indicating the presence of lignin-binding sites on the catalytic domain.  相似文献   

6.
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal‐binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+‐specific 10–23 or Zn2+‐specific 8–17 RNA‐cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal‐specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein‐based sensors.  相似文献   

7.
DNAzymes are in vitro selected DNA oligonucleotides with catalytic activities. RNA cleavage is one of the most extensively studied DNAzyme reactions. To expand the chemical functionality of DNA, various chemical modifications have been made during and after selection. In this review, we summarize examples of RNA-cleaving DNAzymes and focus on those modifications introduced during in vitro selection. By incorporating various modified nucleotides via polymerase chain reaction (PCR) or primer extension, a few DNAzymes were obtained that can be specifically activated by metal ions such as Zn2+ and Hg2+. In addition, some modifications were introduced to mimic RNase A that can cleave RNA substrates in the absence of divalent metal ions. In addition, single modifications at the fixed regions of DNA libraries, especially at the cleavage junctions, have been tested, and examples of DNAzymes with phosphorothioate and histidine-glycine modified tertiary amine were successfully obtained specific for Cu2+, Cd2+, Zn2+, and Ni2+. Labeling fluorophore/quencher pair right next to the cleavage junction was also used to obtain signaling DNAzymes for detecting various metal ions and cells. Furthermore, we reviewed work on the cleavage of 2′-5′ linked RNA and L-RNA substrates. Finally, applications of these modified DNAzymes as biosensors, RNases, and biochemical probes are briefly described with a few future research opportunities outlined at the end.  相似文献   

8.
9.
将单分子发夹寡核苷酸固相延伸形成双链寡核苷酸, 以纳米金颗粒标记NF-κB并银染放大, 采用阳极溶出电位法对NF-κB进行检测. 结果表明, 本法检测序列特异性蛋白质具有高度特异性、高灵敏度和快速等特点, 为转录因子调控机制、开放阅读框识别和功能基因检测等的研究提供了有利工具.  相似文献   

10.
DNA-mediated interactions present a significant opportunity for controlling colloidal self-assembly. Using microcontact printing to achieve spatial control of DNA-surface patterning and DNA-functionalized polystyrene colloids, we report that DNA hybridization can be utilized for sequence-specific reversible self-assembly of well-ordered 2D colloidal arrays. Two essential indicators of DNA-hybridization mediated assembly were confirmed: thermal reversibility and sequence specificity. The arrays melted at 50 degrees C and reassembled when introduced to fresh colloid suspension, and sequence specificity with <1% nonspecific binding was confirmed using fluorescent polystyrene colloids. The real-time assembly of the colloids onto the periodically patterned substrate was monitored by simple laser diffraction to obtain assembly kinetics. Maximum surface coverage of DNA-mediated assembly was determined to be 0.593 for DNA-functionalized 100 nm polystyrene colloids, and 90% of the assembly was complete after 6.25 h of hybridization in 50 mM NaCl Tris buffer. We also demonstrate that DNAzymes, catalytic DNA molecules, can be incorporated into the design, and in the presence of 10 microM Pb(2+), the hybridization-induced array assembly can be disrupted via DNAzyme activity.  相似文献   

11.
DNA aptamers and DNA enzymes (DNAzymes or deoxyribozymes) are single-stranded DNA molecules with ligand-binding and catalytic capabilities, respectively. Allosteric DNA enzymes (aptazymes) are deoxyribozymes whose activity can be regulated by the binding state of an appended aptamer domain and have many potential uses in the fields of drug discovery and diagnostics. In this report, we describe a simple, yet potentially general, DNA aptazyme rational design strategy that requires no structural characterization of the constituent deoxyribozymes and aptamers. It is based on the concept originally developed in our laboratory for the design of structure-switching signaling aptamers that change structural states from a DNA-DNA duplex to a DNA-target complex upon target binding. In our new strategy, an antisense oligonucleotide is used to regulate the enzymatic activity of a linked aptamer-deoxyribozyme by annealing with a stretch of nucleotides on each side of the aptamer-DNAzyme junction. Structural reorganization of the aptamer domain upon target binding relieves the suppressive effect of this regulatory oligonucleotide on the attached DNA enzyme. Consequently, the target-binding event triggers the catalytic action of the aptazyme. We have demonstrated this concept using two RNA-cleaving deoxyribozymes, each adjoined to a DNA aptamer that binds ATP. These allosteric DNA enzymes exhibit the same ligand-binding specificity as the parental DNA aptamer and show up to 30-fold rate enhancement in the presence of ATP. The described methodology provides a convenient approach for rationally designing catalytic DNA-based biosensors.  相似文献   

12.
Approximately 30% of eukaryotic genomes are predicted to encode partially unfolded proteins. Many of these unstructured domains contact multiple partners in short-lived interactions critical for cellular homeostasis. Understanding the functional implications of these transient binding events is a current challenge that could be addressed with designed peptide inhibitors. Most current protein design methodologies, however, target only structurally well-defined, stable structures. To address this limitation, we implemented a computational design strategy that alternates between a fixed backbone sequence search for binding specificity and structural optimization of the designed interfaces. We applied this method to create specific peptide inhibitors of the C-terminal metastable coiled-coil domain of the essential yeast septin Cdc12p. Specific binding of the designed sequences was demonstrated by circular dichroism and equilibrium ultracentrifugation. Our results validate computational methods to design specific peptide ligands to protein domains lacking intrinsic structural stability and set the stage for functional analysis of Cdc12p coiled coil function in vivo.  相似文献   

13.
Cypridina luciferase (Cluc), a secreted luminescent protein identified from Cypridina noctiluca , has two N ‐glycosylation sites. In this study, we evaluated the effects of N ‐glycosylation on Cluc properties by creating site‐directed mutagenic modifications at the consensus sequence for N ‐glycosylation (Asn‐X‐Ser/Thr). Eight variants consisting of four single‐ and double‐residue mutants each were characterized. The producibility and relative specific activity were apparently reduced in mutant Cluc although the thermostability and secretion efficiency were not affected. These results suggested that N ‐glycosylation modifications and the proper amino acid sequence of the N ‐glycan binding sites of Cluc are required for the complete protein folding to form a stable catalytic center, for the proper conformation of substrate–protein interaction residues, or for both and that defects in the glycosylation modification are not related to secretion process and stability of the protein.  相似文献   

14.
DNA aptazymes are allosteric DNAzymes activated by the targets of DNA aptamers. They take the advantages of both aptamers and DNAzymes, which can recognize specific targets with high selectivity and catalyze multiple-turnover reactions for signal amplification, respectively, and have shown their great promise in many analytical applications. So far, however, the available examples of DNA aptazyme sensors are still limited in utilizing only several DNAzymes and DNA aptamers, most likely due to the lack of a general and simple approach for rational design. Herein, we have developed such a general approach for designing fluorescent DNA aptazyme sensors. In this approach, aptamers and DNAzymes are connected at the ends to avoid any change in their original sequences, therefore enabling the general use of different aptamers and DNAzymes in the design. Upon activation of the aptazymes by the targets of interest, the rate of fluorescence enhancement via the cleavage of a dually labeled substrate by the active aptazymes is then monitored for target quantification. Two DNAzymes and two aptamers are used as examples for the design of three fluorescent aptazyme sensors, and they all show high selectivity and sensitivity for the detection of their targets. More DNA aptazyme sensors for a broader range of targets could be developed by this general approach as long as suitable DNAzymes and aptamers are used.  相似文献   

15.
In this work, we have investigated the binding conformations of the substrate in the active site of 5-HIU hydrolase kpHIUH and its catalytic hydrolysis mechanism. Docking calculations revealed that the substrate adopts a conformation in the active site with its molecular plane laying parallel to the binding interface of the protein dimer of kpHIUH, in which His7 and His92 are located adjacent to the hydrolysis site C6 and have hydrogen bond interactions with the lytic water. Based on this binding conformation, density functional theory calculations indicated that the optimal catalytic mechanism consists of two stages: (1) the lytic water molecule is deprotonated by His92 and carries out nucleophilic attack on C6=O of 5-HIU, resulting in an oxyanion intermediate; (2) by accepting a proton transferred from His92, C6–N5 bond is cleaved to completes the catalytic cycle. The roles of His7, His92, Ser108 and Arg49 in the catalytic reaction were revealed and discussed in detail.  相似文献   

16.
徐静  孔德明 《分析化学》2012,(3):347-353
G-四链体DNA酶是由核酸G-四链体与氯化血红素(Hemin)结合后形成的一种具有过氧化物酶活性的人工酶,利用这种DNA酶,可进行多种化学及生物传感器的设计。为提高G-四链体DNA酶类Hg2+传感器的选择性,本研究在传感器的设计过程中引入了分子内裂分G-四链体,即将形成G-四链体的富G序列拆分成两部分,分别放置在Hg2+探测序列的两端。在无Hg2+存在时,部分富G序列被包埋在某一分子内二倍体结构中,无法形成G-四链体。而在Hg2+存在下,Hg2+对T-T碱基错配的稳定能力可以促使Hg2+探测序列形成分子内二倍体结构,并伴随着原有分子间二倍体结构的破坏及分子内裂分G-四链体的生成。利用生成的裂分G-四链体与Hemin作用后检测体系酶活性的提高,实现Hg2+传感器的设计。利用该传感器,可在50~500 nmol/L及2.0~7.5μmol/L两个浓度范围内实现Hg2+的定量检测,检出限为47 nmol/L。由于裂分G-四链体DNA酶的使用强化了传感器对Hg2+的依赖性,极大地提高了设计的Hg2+传感器的选择性。对实际水样的加标回收结果显示,回收率为97.5%~104.5%,证明此传感器可以满足实际水样中痕量Hg2+的分析要求。  相似文献   

17.
18.
DNAzymes, generated through in vitro selection processes, are single-stranded DNA catalysts that can catalyze a wide variety of reactions, such as RNA or DNA cleavage and ligation or DNA phosphorylation. Based on specific cofactor dependence and potent catalytic ability, DNAzymes have been extensively used to develop highly sensitive and specific sensing platforms for metal ions, small molecules, and biomacromolecules. However, in spite of their multiple strong enzymatic turnover properties, few reports have addressed the potential application of RNA-cleaving DNAzymes as therapeutic gene-silencing agents. The main challenges are being met with low efficiency of cellular uptake, instability and the lack of sufficient cofactors for cellular or in vivo study, which have limited the development of DNAzymes for clinical application. In recent years, substantial progress has been made to enhance the delivery efficiency and stability of DNAzymes by developing variety of methods. Smart metal oxide nanomaterials have also been used to meet the requirement of cofactors in situ. This review focuses on the gene silencing application of DNAzymes as well as their physicochemical properties. Methods of increasing the efficacy of DNAzymes in gene therapy are also discussed: delivery systems to enhance the cellular uptake, modifications to enhance the stability and smart systems to generate sufficient cofactors in situ. Finally, some future trends and perspectives in these research areas are outlined.  相似文献   

19.
Engineering functional nucleic acids that are active under unusual conditions will not only reveal their hidden abilities but also lay the groundwork for pursuing them for unique applications. Although many DNAzymes have been derived to catalyze diverse chemical reactions in aqueous solutions, no prior study has been set up to purposely derive DNAzymes that require an organic solvent to function. Herein, we utilized in vitro selection to isolate RNA-cleaving DNAzymes from a random-sequence DNA pool that were “compelled” to accept 35 % dimethyl sulfoxide (DMSO) as a cosolvent, via counter selection in a purely aqueous solution followed by positive selection in the same solution containing 35 % DMSO. This experiment led to the discovery of a new DNAzyme that requires 35 % DMSO for its catalytic activity and exhibits drastically reduced activity without DMSO. This DNAzyme also requires divalent metal ions for catalysis, and its activity is enhanced by monovalent ions. A minimized, more efficient DNAzyme was also derived. This work demonstrates that highly functional, organic solvent-dependent DNAzymes can be isolated from random-sequence DNA libraries via forced in vitro selection, thus expanding the capability and potential utility of catalytic DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号