首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frustrated Lewis pairs (FLPs) are now ubiquitous as metal-free catalysts in an array of different chemical transformations. In this paper we show that this reactivity can be transferred to a polymeric system, offering advantageous opportunities at the interface between catalysis and stimuli-responsive materials. Formation of cyclic carbonates from cyclic ethers using CO2 as a C1 feedstock continues to be dominated by metal-based systems. When paired with a suitable nucleophile, discrete aryl or alkyl boranes have shown significant promise as metal-free Lewis acidic alternatives, although catalyst reuse remains illusive. Herein, we leverage the reactivity of FLPs in a polymeric system to promote CO2/cyclic ether coupling catalysis that can be tuned for the desired epoxide or oxetane substrate. Moreover, these macromolecular FLPs can be reused across multiple reaction cycles, further increasing their appeal over analogous small molecule systems.

Polymeric frustrated Lewis pairs catalyse the coupling of epoxides and oxetanes with CO2 with high selectivity under mild CO2 pressures across multiple reaction cycles.  相似文献   

2.
《中国化学快报》2023,34(8):108011
Carbon dioxide-based polyols with ultra-low molecular weight (ULMW, Mn < 1000 g/mol) are emergent polyurethane precursors with economic and environmental benefits. However, the lack of effective proton-tolerant catalytic systems limits the development of this field. In this work, the polymeric aluminum porphyrin catalyst (PAPC) system was applied to the copolymerization of CO2 and propylene oxide, where sebacic acid, bisphenol A, poly(ethylene glycol), and water were used as chain transfer agents to achieve the controlled synthesis of CO2-polyols. The molecular weight of the resulting CO2-polyols could be facilely regulated in the range of 400–930 g/mol at low catalyst loadings, fully demonstrating its catalytic advantages of high activity, high product selectivity, and excellent proton tolerance of PAPC. Meanwhile, the catalytic efficiency of PAPC could reach up to 2.1–5.2 kg/g under organic CTA conditions, even reaching 1.9 kg/g using water as the CTA. The cPC content could be controlled within 1.0 wt% under the optimized conditions, indicating the excellent controllability of the PAPC system. ULMW CO2-polyols combines the advantages of low viscosity (∼3000 mPa s at 25 °C), low glass transition temperature (∼−73 °C), and high carbonate unit content (∼40%), which is important for the development of high-performance polyurethanes.  相似文献   

3.
Direct catalytic propane dehydrogenation (PDH) to obtain propylene is a more economical and environmentally friendly route for propylene production. In particular, alumina-supported Cr2O3 catalysts can have better potential applications if the acidic properties could be tuned. Herein, a series of rod-shaped porous alumina were prepared through a hydrothermal route, followed by calcination. It was found that the acidity of the synthesized alumina was generally lower than that of the commercial alumina and could be adjusted well by varying the calcination temperature. Such alumina materials were used as supports for active Cr2O3, and the obtained catalysts could enhance the resistance to coke formation associated with similar activity in PDH reaction compared to the commercial alumina. The amount of coke deposited on a self-made catalyst (Cr-Al-800) was 3.6%, which was much lower than that deposited on the reference catalyst (15.7%). The lower acidity of the catalyst inhibited the side reactions and coke formation during the PDH process, which was beneficial for its high activity and superior anti-coking properties.  相似文献   

4.
Selective transformations of carbon dioxide and epoxides into biodegradable polycarbonates by the alternating copolymerization of the two monomers represent some of the most well-studied and innovative technologies for potential large-scale utilization of carbon dioxide in chemical synthesis. For the most part, previous studies of these processes have focused on the use of aliphatic terminal epoxides or cyclohexene oxide derivatives, with only rare reports concerning the synthesis of CO(2) copolymers from epoxides containing electron-withdrawing groups such as styrene oxide. Herein we report the production of the CO(2) copolymer with more than 99% carbonate linkages from the coupling of CO(2) with epichlorohydrin, employing binary and bifunctional (salen)cobalt(III)-based catalyst systems. Comparative kinetic studies were performed via in situ infrared measurements as a function of temperature to assess the activation barriers for the production of cyclic carbonate versus copolymer involving two electronically different epoxides: epichlorohydrin and propylene oxide. The relative small activation energy difference between copolymer versus cyclic carbonate formation for the epichlorohydrin/CO(2) process (45.4 kJ/mol) accounts in part for the selective synthesis of copolymer to be more difficult in comparison with the propylene oxide/CO(2) case (53.5 kJ/mol). Direct observation of the propagating polymer-chain species from the binary (salen)CoX/MTBD (X = 2,4-dinitrophenoxide and MTBD = 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) catalyst system by means of electrospray ionization mass spectrometry confirmed the perfectly alternating nature of the copolymerization process. This observation in combination with control experiments suggests possible intermediates involving MTBD in the CO(2)/epichlorohydrin copolymerization process.  相似文献   

5.
Supramolecular adhesives that enable debonding on-demand are of significant research interest for the development of adaptive and smart materials,yet,biodegrable supramolecular adhesives have been rarely exploited.Herein,telechelic,three-armed and four-armed CO2-based polyols with close molecular weights and various content(or carbonate unite content)have been synthesized via a zinc-cobalt double metal cyanide complex catalyzed ring-opening copolymerization of CO2 and propylene oxide,and further exploited as sustainable and biodegradable building blocks for supramolecular polymers(SMPs)with 2-ureido-4[1H]-pyrimidinone(UPy)motifs.Notably,the orthogonal modulation of the CO2 content and the topology of CO2-based polyols provide a unique opportunity to fine-tune the surface energy as well as the cohesive strength of the resulting CO2-based SMPs.Notably,a three-armed SMP with 44%CO2(3UPy-CO2-44%)can well balance the trade-off between surface energy and cohesive strength,therefore bestowing a high adhesive strength of 7.5 and 9.7 MPa towards stainless steel and wood substrates respectively by testing the corresponding single lap joints.Moreover,the light-responsive adhesion property of 3UPy-CO2-44%has been demonstrated exemplarily by blending with a UV sensitizer.  相似文献   

6.
[structure: see text] A cage shape causes high Lewis acidity and catalytic activity on boron. Borate esters that have cage-shaped ligands have accessible LUMO with lower eigenvalues than normal open-shaped borate esters. A large dihedral angle at C-O-B-O in cage-shaped borate esters induces less overlap between p-orbitals on O and B. The hetero-Diels-Alder reaction is effectively catalyzed by the cage-shaped borate, although the open-shaped borate does not act as a catalyst.  相似文献   

7.
Concentrated CO(2)-in-water (C/W) emulsions are reported for amphiphiles containing alkylene oxide-, siloxane-, and fluorocarbon-based tails as a function of temperature and salinity. Poly(ethylene oxide)-b-poly(butylene oxide) (EO(15)-b-BO(12)) can emulsify up to 70% CO(2) with droplet sizes from 2 to 4 &mgr;m in diameter, as determined by video-enhanced microscopy. This emulsion is stable over 48 h against both flocculation and coalescence. In contrast, it is extremely difficult to form concentrated water-in-CO(2) (W/C) emulsions with surfactants containing alkylene oxide moieties due to limited solvation of such tails by CO(2). In several cases, C/W emulsions are formed even when the surfactant prefers CO(2). This violation of Bancroft's rule may be attributed in part to the low viscosity of the compressed CO(2), which governs several mass and momentum transport mechanisms relevant to emulsion formation and stabilization. For the first time, W/C microemulsions are observed in a system with a nonionic amphiphile, namely F(CF(2)CF(2))(3-8)CH(2)CH(2)O(CH(2)CH(2)O)(10-15)H. For the same system, the emulsion morphology changes from C/W to W/C as the temperature increases. The electrical conductivity of C/W emulsions is predicted successfully as a function of the dispersed phase volume fraction of CO(2) with Maxwell's theory for inhomogeneous systems. Copyright 2001 Academic Press.  相似文献   

8.
Crystals of Cl3SnCH2CH2CO2Pri-i are orthorhombic, space group P212121 with a 9.638(6), b 10.004(7) and c 12.848(8) Å. The tin atom is five-coordinate with two chlorines and carbon equatorial and the remaining chlorine and the carbonyl oxygen axial, in a distorted trigonal-bipyramidal arrangement: (SnCl)ax 2.389(3), average (SnCl)eq 2.320(2), SnC 2.142(9), SnO 2.337(5) Å. Apart from the equatorial chlorine and the terminal carbons in the isopropyl group, all non-hydrogen atoms are essentially coplanar. The molecule approaches C2v symmetry although not constrained to do so by the crystallographic space group.In MeCN solution, the compounds Cl3SnCH2CH2CO2R (I, R = Me, Pr-i, C6H4X (X = p-MeO, H, p-Cl, o-MeO or C6H3Cl2-2,4) form as equilibrium mixtures of 1/1 and 2/1 MeCN/I complexes; the chelate ring is broken in the 2/1 complexes. Equilibrium constants indicate that the strength of the intramolecular SnO coordination in I increases with the electron releasing ability of the R group.  相似文献   

9.
Herein, we reported the microemulsion polymerization in supercritical carbon dioxide. With the aid of an anionic phosphate fluorosurfactant (bis-[2-(F-hexyl)ethyl]phosphate sodium), water-soluble/CO2-insoluble acryloxyethyltrimethyl ammonium chloride monomer and N,N'-methylene-bisacrylamide cross-linker were solubilized into CO2 continuous phase via the formation of water-in-CO2 (w/c) microemulsion water pools. Initiated by a CO2-soluble initiator, 2,2'-azo-bisisobutyronitrile (AIBN), cross-linked poly(acryloxyethyltrimethyl ammonium chloride) particles were produced and stabilized in these w/c internal water pools. Nano-sized particles with sizes less than 20 nm in diameter and narrow particle size distributions were obtained.  相似文献   

10.
11.
Tertiary amines were shown to catalyze efficiently the reaction of CO2 with epichlorohydrin at 60°C and atmospheric pressure. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1442‐1444, July, 1998.  相似文献   

12.
Through tuning the surface wettability of interfacially active TiO2 particles, a pH-responsive Pickering emulsion system is formed, as in situ separation and recycling of the nano-catalysts system.  相似文献   

13.
14.
15.
刘靖  王安琪  景欢旺 《催化学报》2014,35(10):1669-1675
金属离子掺杂纳米TiO2(M-TiO2,M=Zn2+,Cu2+,Co2+,Mn2+,Ni2+)在CO2与环氧化合物的偶联反应中表现出较高的催化活性.反应以四正丁基碘化铵(TBAI)为共催化剂,在无溶剂条件下进行.考察了反应温度、反应时间和CO2压力在Zn-TiO2/TBAI体系中对反应性能的影响.作为无毒的多相催化剂,Zn-TiO2可循环使用5次,其催化活性没有明显降低.  相似文献   

16.
Site-specific functional polymers are generally synthesized from functionalized chain transfer agents(CTA)in the presence of catalysts.However,the poor solubility or chemical inertness of CTAs may make polymerizations uncontrollable.Now,this issue is addressed by proposing a strategy of designing chain-transfer-catalyst(CTC)that combines catalyst and CTA into one.The occurrence of catalytic effect naturally triggers the chain transfer process to give catalyst-labeled polymers with well-defined structures.As a proof-of-concept,cobalt(III)porphyrin catalysts with one,two and four hydroxyl groups act as efficient CTCs,giving the corresponding site-specific functional poly(propylene carbonate)s(PPC),diversifying the topology of polymers.Furthermore,porphyrin-capped PPCs with controllable Mn in the range of 1,000–16,800 g mol-1were obtained by using monofunctional CTC(CTCOH).Moreover,different from traditional“catalyst+CTA”systems,a novel dynamic network transfer mechanism of CTCOH was proposed.This study provides a CTC strategy for the synthesis of site-specific functional polymers.  相似文献   

17.
Activation of Au/TiO2 catalyst for CO oxidation   总被引:2,自引:0,他引:2  
Changes in a Au/TiO(2) catalyst during the activation process from an as-prepared state, consisting of supported AuO(x)(OH)(4-2x)(-) species, were monitored with X-ray absorption spectroscopy and FTIR spectroscopy, complemented with XPS, microcalorimetry, and TEM characterization. When the catalyst was activated with H(2) pulses at 298 K, there was an induction period when little changes were detected. This was followed by a period of increasing rate of reduction of Au(3+) to Au(0), before the reduction rate decreased until the sample was fully reduced. A similar trend in the activation process was observed if CO pulses at 273 K or a steady flow of CO at about 240 K was used to activate the sample. With both activation procedures, the CO oxidation activity of the catalyst at 195 K increased with the degree of reduction up to 70% reduction, and decreased slightly beyond 80% reduction. The results were consistent with metallic Au being necessary for catalytic activity.  相似文献   

18.
SnO2是一种具有丰富表面缺位氧的n型半导体,其晶格氧亦可还原.另外其熔点高达1630oC,具有较高的热稳定性能.在过去的几十年中, SnO2主要用作气敏材料.而其作为催化材料的性能,特别是用于大气污染治理则鲜见报道.在过去的几年中,本课题组系统研究了SnO2的催化化学,发现利用传统共沉淀法制备的SnO2纳米粉末,在焙烧温度高于500 oC时,其比表面积通常低于20 m2/g,因而限制了其氧化活性.在SnO2晶格中掺杂Fe、Cr、Mn、Ce和Ta等形成固溶体可有效提高其比表面积并产生更多的活性氧物种,因而其对CO和CH4的氧化活性及稳定性大幅度提高.本课题组近期研究结果表明,采用熔盐法制备的高纯SnO2纳米棒单晶比SnO2纳米颗粒和纳米微球等具有更优异的CO氧化活性,260 oC即可完全氧化CO.且在240–260 oC狭窄温度区间发生转化率突跃,表现出类似贵金属的催化行为.值得指出的是, SnO2纳米棒的比表面积(1 m2/g)远低于其他几种形貌的材料,且无活泼氧存在.但研究表明SnO2纳米棒具有优先暴露的(110)活泼晶面,是导致其活性优良的主要原因.另外,我们采用简单共沉淀法成功制备了高比表面介孔Cu-Sn复合氧化物纳米片(196 m2/g),其在140 oC即可将CO完全氧化,且具有优良的抗水失活性能.因此, SnO2的形貌是影响其催化活性的主要因素之一,但迄今未见较系统深入的研究.在上述工作基础上,本文通过水热法,不添加任何有机模板剂,成功制备了厚度约10 nm的介孔SnO2纳米片和纳米棒及纳米颗粒混合物样品;采用常规共沉淀法制备了SnO2纳米颗粒.并将以上三种不同形貌的SnO2纳米材料用于CO氧化.利用SEM、XRD、N2吸附-脱附、H2-TPR和XPS探讨了不同形貌SnO2催化剂的体相结构和表面性质及其对催化性能的影响.与SnO2纳米颗粒相比,介孔SnO2纳米片具有高的比表面积、孔体积及更活泼的氧中心,因此后者CO氧化活性远高于前者.在空速18000 mL/(g·h)时, SnO2纳米片在260 oC即可完全氧化CO.而SnO2纳米颗粒的CO完全氧化温度高于360 oC. SnO2纳米棒和纳米颗粒的混合样品虽然其比表面积和孔体积及表面活性氧的活性仅略高于SnO2纳米颗粒,但XRD定量结果表明,其具有更多的暴露(110)活泼晶面,因而活性也高于SnO2纳米颗粒. SnO2纳米片催化剂的寿命及抗水性能测试结果表明,该催化剂具有良好的稳定性,且水蒸气仅对其活性产生可恢复的影响.进一步优化其性能, SnO2纳米片有可能用于实际汽车尾气状况下的CO催化清除.  相似文献   

19.
《天然气化学杂志》2014,(6):761-770
Highly coke-resisting ZrO2-decorated Ni/A1203 catalysts for CO methanation were prepared by a two-step process. The support was first loaded with NiO by impregnating method and then modified with ZrO2 by deposition-precipitation method (IM-DP). Nitrogen adsorption- desorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetdc analysis, H2 temperature- programmed reduction and desorption, NH3 temperature-programmed desorption, and zeta potential analysis were employed to characterize the samples. The results revealed that, compared with the catalysts with the same composition prepared by co-impregnation (CI) and sequential impregnation (SI) methods, the Ni/A1203 catalyst prepared by IM-DP showed much enhanced catalytic performance for syngas methanation under the condition of atmospheric pressure and a high weight hourly space velocity of 120000 mL.g-1 .h-1. In a 80 h life time test under the condition of 300-600 ~C and 3.0 MPa, this catalyst showed high stability and resistance to coking, and the amount of deposited carbon was only 0.4 wt%. On the contrary, the deposited carbon over the catalyst without ZrO2 reached 1.5 wt% after a 60 h life time test. The improved catalytic performance was attributed to the selective deposition of ZrO2 nanoparticles on the surface of NiO rather than A1203, which could he well controlled via changing the electrostatic interaction in the DP procedure. This unique structure could enhance the dissociation of CO2 and generate surface oxygen intermediates, thus preventing carbon deposition on the Ni particles in syngas methanation.  相似文献   

20.
Highly coke-resisting Zr O2-decorated Ni/Al2O3 catalysts for CO methanation were prepared by a two-step process. The support was first loaded with Ni O by impregnating method and then modified with Zr O2 by deposition-precipitation method(IM-DP). Nitrogen adsorptiondesorption, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, H2 temperatureprogrammed reduction and desorption, NH3temperature-programmed desorption, and zeta potential analysis were employed to characterize the samples. The results revealed that, compared with the catalysts with the same composition prepared by co-impregnation(CI) and sequential impregnation(SI) methods, the Ni/Al2O3 catalyst prepared by IM-DP showed much enhanced catalytic performance for syngas methanation under the condition of atmospheric pressure and a high weight hourly space velocity of 120000 m L g-1 h-1. In a 80 h life time test under the condition of 300–600°C and 3.0 MPa, this catalyst showed high stability and resistance to coking, and the amount of deposited carbon was only 0.4 wt%. On the contrary, the deposited carbon over the catalyst without Zr O2 reached 1.5 wt% after a 60 h life time test. The improved catalytic performance was attributed to the selective deposition of Zr O2 nanoparticles on the surface of Ni O rather than Al2O3, which could be well controlled via changing the electrostatic interaction in the DP procedure. This unique structure could enhance the dissociation of CO2 and generate surface oxygen intermediates, thus preventing carbon deposition on the Ni particles in syngas methanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号