首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new biomimetic functional system having an impure multiwalled carbon nanotube (MWCNT‐Fe)–chitosan biopolymer (H2N–CHIT) chemically modified glassy carbon electrode (GCE/[MWCNT‐Fe:H2N‐CHIT]) has been developed and demonstrated efficient hydrogen peroxide electrocatalytic and electrochemical sensing applications in pH 7 phosphate buffer solution (PBS). The hybrid system showed a stable and well‐defined surface confined redox peak at an apparent electrode potential, E°′=?0.22 V versus Ag/AgCl with surface excess value 13.63 nmol cm?2. Physicochemical characterizations of the hybrid by using FESEM, TEM, Raman spectroscopy, FTIR, and various control electrochemical experiments revealed that the iron impurity in the MWCNT interacted with the amino functional group of the chitosan polymer and thereby formed an unique complex‐like structure ([MWCNT‐FeIII/II:NH2‐CHIT]), similar to heme peroxidase with a central FeIII/II‐redox‐active site. The biomimetic system followed Michaelis–Menten‐type reaction kinetics for the H2O2 reduction reaction with a KM value of 0.23 mM . At pH 7, amperometric it sensing and flow‐injection analysis of H2O2 on the biomimetic system showed calibration plots in windows 5–500 and 50–2500 μM , with detection‐limit values of 2.3 and 9.7 μM , respectively. Unlike most of the previously reported systems that undergo serious interferences in physiological pH, the biomimetic system displayed a remarkable tolerance to other co‐existing interferants (such as cysteine, ascorbic acid, uric acid, nitrate, and nitrite), at a H2O2 detection potential similar to the peroxidase enzyme. The ability of the biosensor system to perform routine analyses was demonstrated by the detection of H2O2 present in simulated milk and clinical and cosmetic samples with appreciable recovery values.  相似文献   

2.
The interaction of BSA and FeIII complexes ([FeIII(gly)(H2O)4]2+, [FeIII(ida)(H2O)3]+, and [FeIII(nta)(H2O)2], gly—glyane, ida—iminodiacetic acid, nta—triglycolamic acid) as well as the sonocatalytic damage to BSA was studied by UV-vis and fluorescence spectra. In addition, the influences of ultrasonic irradiation time and FeIII complex concentration were also examined on the sonocatalytic damage to BSA. The results showed that the fluorescence quenching of BSA solution caused by the FeIII complexes belonged to the static quenching process. The BSA and FeIII complexes interacted with each other mainly through weak interaction and coordinate actions. The binding association constants (K) and binding site numbers (n) were calculated. The results were as follows: K 1 = 0.5353 × 104 l mol−1 and n 1 = 0.9812 for [FeIII(gly)(H2O)4]2+, K 2 = 1.4285 × 104 l mol−1 and n 2 = 1.0899 for [FeIII(ida)(H2O)3, and K 3 = 0.4411 × 104 l mol−1 and n 3 = 0.9471 for [FeIII(nta)(H2O)2]. Otherwise, under ultrasonic irradiation the BSA were obviously damaged by the FeIII complexes. The damage degree rose up with the increase of ultrasonic irradiation time and FeIII complex concentration. And that, [FeIII(nta)(H2O)2] exhibited in a way higher sonocatalytic activity than [FeIII(gly)(H2O)4]2+ and [FeIII(ida)(H2O)3]+.  相似文献   

3.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

4.
The interaction between bovine serum albumin (BSA) and FeIII complexes with three binary organic acid (biorga) ligands, [FeIII(oxa)(H2O)4]+ (oxa = oxalic acid), [FeIII(pra)(H2O)4]+ (pra = propanedioic acid) and [FeIII(sua)(H2O)4]+ (sua = succinic acid), as well as the sonocatalytic damage of BSA in the presence of these three FeIII–biorga complexes under ultrasonic irradiation, were studied by UV–vis and fluorescence spectra. The experimental results show that the fluorescence quenching process of BSA caused by three FeIII–biorga complexes are all static quenching and the corresponding quenching rate constants (K q), equilibrium constants (K A) and the binding site numbers (n) were calculated. The results reveal that, under ultrasonic irradiation, the BSA molecules were obviously damaged by these FeIII–biorga complexes. In addition, the effects of several factors on the damage of BSA molecules were examined. The experimental results demonstrate that the damage degree of BSA increased with an increase of ultrasonic irradiation time, FeIII–biorga complex concentration, and ionic strength. In comparison, [FeIII(pra)(H2O)4]+ exhibited higher sonocatalytic activity than [FeIII(oxa)(H2O)4]+ and [FeIII(sua)(H2O)4]+. Finally, the extent of generation of $ \cdot {\text{O}}_{2}^{ - } $ · O 2 ? and ·OH during sonocatalytic processes was estimated. Perhaps, the results will be significant for promoting sonodynamic treatment (SDT) of tumors at the molecular level.  相似文献   

5.
It was found that photoelectrochemical water oxidation takes place at a polynuclear iron-cyanide complex-coated electrode called Berlin Brown (BB; Fe4III[FeIII(CN)6]33 3X). The electrode-coated BB showed electrocatalytic activity for water oxidation to produce O2 not only in the dark but also under illumination to result in photoinduced water oxidation. The amount of the photoelectrochemically produced O2 increased with the thickness of the BB film, indicating that the BB works as a bulk catalyst.  相似文献   

6.
The electrocatalytic activity of a Prussian blue (PB) film on the aluminum electrode by taking advantage of the metallic palladium characteristic as an electron-transfer bridge (PB/Pd–Al) for electrooxidation of 2-methyl-3-hydroxy-4,5-bis (hydroxyl–methyl) pyridine (pyridoxine) is described. The catalytic activity of PB was explored in terms of FeIII [FeIII (CN)6]/FeIII [FeII (CN)6]1− system. The best mediated oxidation of pyridoxine (PN) on the PB/Pd–Al-modified electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 6 at scan rate of 20 mV s−1. The mechanism and kinetics of the catalytic oxidation reaction of PN were monitored by cyclic voltammetry and chronoamperometry. The results were explained using the theory of electrocatalytic reactions at chemically modified electrodes. The charge transfer-rate limiting reaction step is found to be a one-electron abstraction, whereas a two-electron charge transfer reaction is the overall oxidation reaction of PN by forming pyridoxal. The value of α, k, and D are 0.5, 1.2 × 102 M−1 s−1, and 1.4 × 10−5 cm2 s−1, respectively. Further examination of the modified electrodes shows that the modifying layers (PB) on the Pd–Al substrate have reproducible behavior and a high level of stability after posing it in the electrolyte or Pyridoxine solutions for a long time.  相似文献   

7.
A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2L (H2L=2‐[5‐phenyl‐1H‐pyrazole‐3‐yl] 6‐benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII(H2L)2](BF4)2 ( 1A ), exhibits abrupt spin transition at T1/2=258 K, and treatment with base yields a deprotonated analogue [FeII(HL)2] ( 1B ), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII(HL)(H2L)](BF4)Cl ( 1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII(L)(HL)], ( 1D ), and (TEA)[FeIII(L)2], ( 1E ) exist in the low‐spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid‐state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.  相似文献   

8.
采用直接混合法制得平均尺寸小于50 nm的六氰合铁酸钴纳米粒子,元素分析表明其计量学分子式为K0.2Co1.4[Fe(CN)6]•xH2O,红外光谱证明此物质是由铁磁性的CoII1.5[FeIII(CN)6]和反铁磁性的KCoIII[FeII(CN)6]组成,并含有一定量的结晶水。用六氰合铁酸钴纳米粒子修饰的玻碳电极具有良好的稳定性和可逆的循环伏安行为,其电化学特征受溶液中配对阳离子种类和支持电解质浓度的影响。作为电极表面的媒介体,该薄膜对多巴胺的氧化还原具有电催化作用。  相似文献   

9.
Cationic iron (III) tetrakis-5, 10, 15, 20-(N-methyl-4-pyridyl) porphyrin (FeIIITMPyP) was intercalated into layered semiconductor KNb3O8 by ion-exchange method. The target product was characterized by XRD, Fourier transform infrared, UV–vis, and TGA. FeIIITMPyP forms an inclined monolayer between Nb3O8 ? nanosheets and endues the nanocomposite with excellent electrochemical catalytic activities. The target nanocomposite modified glass carbon electrode shows good electrocatalytic activities for the oxidation of ascorbic acid (AA); the catalytic mechanism was proposed. Differential pulse voltammetric technique was used for detection of AA in neutral aqueous solution; a detection limit of 4.2?×?10?5 M was obtained, and the modified electrode showed good reproducibility in electrochemical detection.  相似文献   

10.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

11.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

12.
Platinum (Pt) nanoparticles were electrochemically deposited on multi-walled carbon nanotubes (MWCNTs) through a three-step process, including an electrochemical treatment of MWCNT, electro-oxidation of PtCl4 2− to Pt(IV) complex, and an electro-conversion of Pt(0) on MWCNT. The effect of formation conditions for Pt(IV) complexes on the Pt nanoparticals transformed was investigated. The structure and elemental composition of the resulting Pt/MWCNT electrode were characterized by transmission electron micrograph (TEM) and energy dispersive X-ray spectroscopy (EDX). The electrocatalytic properties of the resulting Pt/MWCNT electrode for methanol oxidation have been investigated. The high electrocatalytic activity and good stability of Pt/MWCNT electrode may be attributed to the high dispersion of platinum nanoparticles and the particular properties of the MWCNT supports.  相似文献   

13.
The syntheses, structures and magnetic properties of the coordination compounds of formula [FeIII(acac2-trien)][MnIICrIII(Cl2 An)3]·(CH3CN)2 (1), [FeIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (2) and [GaIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (3) are reported. They exhibit a 2D anionic network formed by Mn(ii) and Cr(iii) ions linked through anilate ligands, while the [FeIII(acac2-trien)]+ or [GaIII(acac2-trien)]+ charge-compensating cations are placed inside the hexagonal channels of the 2D network, instead of being inserted in the interlamellar spacing. Thus, these crystals are formed by hybrid layers assembled through van der Waals interactions. The magnetic properties indicate that these compounds behave as magnets exhibiting a long-range ferrimagnetic ordering at ca. 11 K, while the inserted Fe(iii) cations remain in the high-spin state. As for graphene, these layered materials can be exfoliated in atomically-thin layers with heights down to 2 nm by using the well-known Scotch tape method. Hence, this micromechanical procedure provides a suitable way to isolate ultrathin layers of this kind of graphene related magnetic materials. Interestingly, this method can also be successfully used to exfoliate the 2D anilate-based compound [FeIII(sal2-trien)][MnIICrIII(Cl2An)3]·solv (4), which exhibits the typical alternated cation/anion layered structure. This result shows that the micromechanical exfoliation method, which has been extensively used for exfoliating van der Waals layered solids, can also be useful for exfoliating layered coordination compounds, even when they are formed by ionic components.  相似文献   

14.
A series of tricyanoiron(III) complexes with the general formula mer-[FeIII(5-Xsap)(CN)3]2? (X = H, Me, MeO, Cl or Br, sapH2 = N-salicylidene-o-aminophenol) have been synthesized. These complexes were characterized by IR, ESI-MS, UV/Vis, elemental analysis and magnetic measurements. The structures of (PPh4)2[FeIII(sap)(CN)3] and (PPh4)2[FeIII(5-Mesap)(CN)3] have been determined by X-ray crystallography. These low-spin d 5 tricyanoiron(III) complexes are potential building blocks for the construction of molecule-based magnets.  相似文献   

15.
An original copper‐phenolate complex, mimicking the active center of galactose oxidase, featuring a pyrene group was synthesized. Supramolecular pi‐stacking allows its efficient and soft immobilization at the surface of a Multi‐Walled Carbon Nanotube (MWCNT) electrode. This MWCNT‐supported galactose oxidase model exhibits a 4 H+/4 e? electrocatalytic activity towards oxygen reduction at a redox potential of 0.60 V vs. RHE at pH 5.  相似文献   

16.
With the coordination geometry of DyIII being relatively fixed, oxygen and sulfur atoms were used to replace one porphyrin pyrrole nitrogen atom of sandwich complex [(Bu)4N][DyIII(Pc)(TBPP)] [Pc = dianion of phthalocyanine, TBPP = 5,10,15,20-tetrakis[(4-tert-butyl)phenyl]porphyrin]. The energy barrier of the compounds was enhanced three times, with the order of DyIII(Pc)(STBPP) > DyIII(Pc)(OTBPP) > [(Bu)4N][DyIII(Pc)(TBPP)] [STBPP = monoanion of 5,10,15,20-(4-tert-butyl)phenyl-21-thiaporphyrin, OTBPP = monoanion of 5,10,15,20-(4-tert-butyl)phenyl-21-oxaporphyrin]. Theoretical calculations offer reasonable explanations of such a significant enhancement. The energy barrier of 194 K for DyIII(Pc)(STBPP) represents the highest one among all the bis(tetrapyrrole) dysprosium SMMs, providing a strategy to rationally enhance the anisotropy and energy barrier via atom replacement.  相似文献   

17.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

18.
Two examples of heterometallic–organic frameworks (HMOFs) composed of dicarboxyl‐functionalized FeIII‐salen complexes and d10 metals (Zn, Cd), [Zn2(Fe‐L)22‐O)(H2O)2] ? 4 DMF ? 4 H2O ( 1 ) and [Cd2(Fe‐L)22‐O)(H2O)2] ? 2 DMF ? H2O ( 2 ) (H4L=1,2‐cyclohexanediamino‐N,N′‐bis(3‐methyl‐5‐carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2 , each square‐pyramidal FeIII atom is embedded in the [N2O2] pocket of an L4? anion, and these units are further bridged by a μ2‐O anion to give an (Fe‐L)22‐O) dimer. The two carboxylate groups of each L4? anion bridge ZnII or CdII atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2‐chlorophenol (2‐CP) under visible‐light irradiation, which, to the best of our knowledge, is the first time that this has been observed for FeIII‐salen‐based HMOFs.  相似文献   

19.
《中国化学会会志》2018,65(9):1127-1135
In this paper, a WS2 nanosheet was modified on the surface of a carbon ionic liquid electrode (CILE), and horseradish peroxidase (HRP) was further fixed on the electrode with a Nafion film. Direct electrochemistry and bioelectrocatalysis of HRP incorporated on the modified electrode were investigated in detail. On Nafion/HRP/WS2/CILE, a pair of well‐defined quasi‐reversible redox peaks appeared on the cyclic voltammogram, indicating that the presence of the WS2 nanosheet on the electrode surface could provide a specific interface with large surface area for HRP and its direct electron transfer rate was greatly enhanced. The formal potential (E0) obtained was –0.179 V, which was the typical feature of heme Fe(III)/Fe(II) in HRP. The electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) of HRP were calculated as 0.44 and 1.01 s–1, respectively. This HRP‐modified electrode showed excellent electrocatalytic activity for the reduction of trichloroacetic acid and NaNO2 with a wide linear range and low detection limit. Real samples were detected by this proposed method, indicating the successful fabrication of a new third‐generation electrochemical enzyme sensor utilizing the WS2 nanosheet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号