首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2022,33(10):4623-4627
Electrocatalytic nitrogen reduction reaction (NRR) is an environmentally friendly method for sustainable ammonia synthesis under ambient conditions. Searching for efficient NRR electrocatalysts with high activity and selectivity is currently urgent but remains great challenge. Herein, we systematically investigate the NRR catalytic activities of single and double transition metal atoms (TM = Fe, Co, Ni and Mo) anchored on g-C6N6 monolayers by performing first-principles calculation. Based on the stability, activity, and selectivity analysis, Mo2@g-C6N6 monolayer is screened out as the most promising candidate for NRR. Further exploration of the reaction mechanism demonstrates that the Mo dimer anchored on g-C6N6 can sufficiently activate and efficiently reduce the inert nitrogen molecule to ammonia through a preferred distal pathway with a particularly low limiting potential of -0.06 V. In addition, we find that Mo2@g-C6N6 has excellent NRR selectivity over the competing hydrogen evolution reaction, with the Faradaic efficiency being 100%. Our work not only predicts a kind of ideal NRR electrocatalyst but also encouraging more experimental and theoretical efforts to develop novel double-atom catalysts (DACs) for NRR.  相似文献   

2.
Nitrogen reduction reaction(NRR) is a clean mode of energy conversion and the development of highly efficient NRR electrocatalysts under ambient conditions for industrial application is still a big challenge.Metal-nitrogen-carbon(M-N-C) has emerged as a class of single atom catalyst due to the unique geometric structure, high catalytic activity, and clear selectivity. Herein, we designed a series of dual metal single atom catalysts containing adjacent M-N-C dual active centers(MN4/M’N...  相似文献   

3.
Nitrate is a pervasive aquatic contaminant of global environmental concern. In nature, the most effective nitrate reduction reaction (NRR) is catalyzed by nitrate reductase enzymes at neutral pH, using a highly‐conserved Mo center ligated mainly by oxo and thiolate groups. Mo‐based NRR catalysts mostly function in organic solvents with a low water stability. Recently, an oxo‐containing molybdenum sulfide nanoparticle that serves as an NRR catalyst at neutral pH was first reported. Herein, in a nanoparticle‐catalyzed NRR system a pentavalent MoV(=O)S4 species, an enzyme mimetic, served as an active intermediate for the NRR. Potentiometric titration analysis revealed that a redox synergy among MoV?S, S radicals, and MoV(=O)S4 likely play a key role in stabilizing MoV(=O)S4, showing the importance of secondary interactions in facilitating NRR. The first identification and characterization of an oxo‐ and thiolate‐ligated Mo intermediates pave the way to the molecular design of efficient enzyme mimetic NRR catalysts in aqueous solution.  相似文献   

4.
Mo2C/Al2O3 catalyst was prepared by the impregnation method with urotropine and ammonium paramolybdate. The catalytic effect of Mo2C as a typical transition‐metal carbide in sulfur‐resistant methanation was studied. The catalysts prepared were characterized by N2 adsorption–desorption, X‐ray diffraction, transmission electron microscopy, H2‐temperature‐programmed reduction, and Raman spectra, with the results confirming the formation of β‐molybdenum carbide on the surface of the catalysts. Studies on catalysts with different loading doses indicate that the optimal loading of Mo2C/Al2O3 is about 15 wt.%, which enables CO conversion rate of up to 47%, with methane selectivity of up to 53%. This work further explored the effect of different concentrations of H2S in the raw gas on the performance of the catalyst, with the results showing that high concentration of H2S (>1500 ppm) can lead to sulfuration of active species on the catalyst, while resulting in a decrease in the catalytic activity.  相似文献   

5.
《Mendeleev Communications》2022,32(5):672-674
Supported bimetallic Cu–Fe catalysts revealed high activity and selectivity in isoprenyl acetate hydrogenation to isoprenol under mild reaction conditions (2 MPa H2 and 170 °C). The nature of the carrier has a significant impact on the catalytic properties of Cu–Fe catalysts. The best catalytic properties were found for the 5% Cu–5% Fe/Al2O3 bimetallic catalyst, which provides a 98% isoprenyl acetate conversion in 4 h with the isoprenol selectivity of 82%.  相似文献   

6.
徐爱新  王阳  葛汉青  陈淑  李彦花  陆维敏 《催化学报》2013,34(12):2183-2191
在丙烷选择氧化制丙烯酸催化剂MoVTeNbOx的活性相M1基础上掺杂一定量的Cr,当Cr/Nb摩尔比为0.002时,催化剂具有很高的丙烯酸选择性(78.3%)和收率(50.7%);并采用X射线衍射、X射线光电子能谱、程序升温还原、O2程序升温脱附、NH3程序升温脱附和异丙醇氧化等手段对催化剂的构效关系进行了探讨.结果表明,适量Cr的添加可调节催化剂表面Mo6+,V5+和Te4+等物种含量,提高催化剂的氧化能力,使丙烷转化率增加.同时,适量Cr的添加使得催化剂表面酸强度下降,酸性位点数量减少,从而抑制丙烯酸的深度氧化,提高了丙烯酸选择性.  相似文献   

7.
Nickel (Ni) nanoparticles were immobilized on the surface of magnetic MgAl layered double hydroxide intercalated 10-molybdo-2-vanadophosphate (Fe–MgAl/Mo10V2–Ni) for the first time. The presence of Ni nanoparticles onthe high-surface area Fe–MgAl LDH structure in the presence of Mo10V2 makes this catalyst an ideal option in terms of efficiency and selectivity for Heck coupling reaction. Synergic effects of Mo10V2 and Ni were investigated by an electrochemical technique. Increasing of the ECSA of the catalyst compared to Fe–Mg–Al–Ni leads to enhancement of the catalytic activity and proves the synergic effect. A new catalytic mechanism was introduced for this kind of reaction. The resulting structure and its catalytic behavior were characterized by FT-IR, XRD, ICP-AES, TEM, SEM, EDX, EBSD, XPS, BET, VSM, CV, LSV and zeta potential analyses. More importantly, Fe–MgAl/Mo10V2–Ni can easily be separated from the reaction mixture using an external magnet and reused for at least four successive runs without any substantial reduction in its catalytic activity.  相似文献   

8.
Catalysts have been synthesized using the Anderson polyoxometalates (POMs) (NH4)4[Ni(OH)6Mo6O18] (NiMo6POM), (NH4)6[Co2Mo10O38H4] · 7H2O (Co2Mo10POM), and H6[Co2Mo10O38H4] (Co2Mo10HPA) as the precursors and hydrogen peroxide as the solvent. The catalysts have been characterized by low-temperature nitrogen adsorption, XPS, and HRTEM. Their catalytic properties have been tested in thiophene hydrodesulfurization and in the hydrodesulfurization and hydrogenation of components of diesel oil. The active phase of the catalysts synthesized using the POMs is the type II CoMoS phase in which the mean plate length is 3.6–3.9 nm and the mean number of MoS2 plate per plate packet is 1.8–2.0. Use of hydrogen peroxide provides an efficient means to reduce the proportion of Co2+ promoter atoms surrounded by oxygen in the case of an impregnating solution containing both an ammonium salt of a heteropoly acid and a Co2+ salt. In the catalysts synthesized using cobalt salts of Co2Mo10HPA, the support surface contains the multilayer type II CoMoS phase and cobalt sulfides. These catalyst show high catalytic properties in thiophene hydrogenolysis and diesel oil hydrorefining. Models are suggested for the catalysts synthesized using Anderson POMs.  相似文献   

9.
We stress the importance of identifying the state in which catalysts are during the catalytic reaction. Catalysts as prepared do not correspond to the real working catalyst. Several examples will be recalled, and a new one (Mo-Te-O catalyst) will be mentioned. In a more detailed way, it will be shown that the working state of MoO3 is MoxO3x-2 with 8 ≤x≤18. The pitfalls encountered when focusing on catalysts as prepared (as opposed to catalysts “as they work”) is illustrated in the case of mixed SbxMoyOz oxides which decompose spontaneously during the reaction.  相似文献   

10.
Summary Catalytic and physicochemical properties of V-Mo-Nb oxide catalysts (V0.3Mo1Nbx, where x = 0.05, 0.15, 0.22, and 0.27) have been studied in the ammoxidation of ethane. An increase in the Nb content in the samples is accompanied by an increase in the catalytic activity and selectivity to acetonitrile. It was established that a triple Mo5O14-like phase with a variable composition (V0.23 ±0.3Mo1Nbx, where х = 0.2?0.37) acts as an active component in the catalyst.</o:p>  相似文献   

11.
Recent progress on the bismuth molybdate catalysts for oxidative dehydrogenation of n-butene to 1,3-butadiene was reported in this review. A number of bismuth molybdate catalysts, including pure bismuth molybdates (α-Bi2Mo3O12, β-Bi2Mo2O9, and γ-Bi2MoO6) and multicomponent bismuth molybdates, were prepared by a co-precipitation method for use in the production of 1,3-butadiene from C4 raffinate-3 through oxidative dehydrogenation of n-butene. It was observed that multicomponent bismuth molybdate catalyst was more efficient than pure bismuth molybdate catalyst in the oxidative dehydrogenation of n-butene. Various experimental measurements such as temperature-programmed reoxidation, X-ray photoelectron spectroscopy, and O2-temperature-programmed desorption analyses were carried out to elucidate the different catalytic activity of bismuth molybdate catalysts. It was revealed that a bismuth molybdate catalyst with a higher oxygen mobility showed a better catalytic performance in terms of conversion of n-butene and yield for 1,3-butadiene. We have successfully demonstrated from experimental findings that oxygen mobility of bismuth molybdate catalyst played a key role in determining the catalytic performance in the oxidative dehydrogenation of n-butene to 1,3-butadiene.  相似文献   

12.
吴江浩  蒋平平  冷炎  叶媛园  秦晓洁 《催化学报》2013,34(12):2236-2244
合成并表征了一类双核长链烷基咪唑阳离子修饰的过氧磷钨杂多酸盐催化剂[Dnmin]1.5PW4O24,考察了催化剂在过氧化氢为氧源的烯烃环氧化反应中的催化活性.研究表明,这类催化剂在反应过程中表现出相转移催化现象,并具有较高的催化活性和选择性.其中,双核十二烷基咪唑杂多酸盐催化剂[D12min]1.5PW4O24的活性最佳,其环己烯转化率和环氧环己烷选择性分别达到97.7%和96.3%.催化剂在经过简单离心分离后可重复使用,重复使用4次后环己烯转化率和环氧环己烷选择性仍可分别达到72.4%和97.2%.催化剂[D12min]1.5PW4O24在其它几种烯烃的环氧化反应中均表现出相转移催化特性,且具有较高的催化活性.  相似文献   

13.
The role of various components of a multiphase oxide catalytic system in the partial oxidation of propylene to acrolein is investigated. Catalytic activity is studied for the Co6–8Mo12Fe2–3Bi0.5–0.75Sb0.1K0.1Ox catalyst, which is taken to be the reference, and for catalysts in which the amount of some component is progressively reduced down to zero. The results obtained provide insights into the role of the components of the catalyst.CoMoO4 forms the structural framework of the catalyst. Iron molybdate can be stabilized on CoMoO4 as β-phase. As its content is increased, the catalyst gains activity but its selectivity declines. Bismuth molybdate is responsible for the selectivity of the process. When present in small amounts, MoO3 raises the selectivity, binds free oxides, and converts reduced molybdates into their oxidized forms. Excess molybdenum trioxide causes a dramatic fall in the catalytic activity. Potassium and antimony decrease the catalytic activity, but even small amounts of these elements raise the selectivity of the catalyst. Chromium can substitute for iron atoms in the multicomponent catalyst. Ni, Mn, and Mg substitute for Fe in iron molybdate to decrease the catalytic activity.__________Translated from Kinetika i Kataliz, Vol. 46, No. 4, 2005, pp. 569–579.Original Russian Text Copyright © 2005 by Udalova, Shashkin, Shibanova, Krylov.  相似文献   

14.
The electrocatalysis of nitrate reduction reaction(NRR) has been considered to be a promising nitrate removal technology.Developing a highly effective iron-based electrocatalyst is an essential challenge for NRR.Herein,boron-iron nanochains(B-Fe NCs) as efficient NRR catalysts were prepared via a facile lowcost and scalable method.The Fe/B ratio of the B-Fe NCs-x can be elaborately adjusted to optimize the NRR catalytic performance.Due to the electron transfer from boron to metal,the metal-metal bonds are weakened and the electron density near the metal atom centers are rearranged,which are favor of the conversion from NO_3~-into N_2.Moreover,the well-crosslinked chain-like architectures benefit the mass/electron transport to boost the exposure of abundant catalytic active sites.Laboratory experiments demonstrated that the optimized B-Fe NCs catalyst exhibits superior intrinsic electrocatalytic NRR activity of high nitrate conversion(~80%),ultrahigh nitrogen selectivity(~99%) and excellent long-term reactivity in the mixed electrolyte system(0.02 mol/L NaCl and 0.02 mol/L Na_2 SO_4 mixed electrolyte),and the electrocatalytic activity of the material shows poor performance at low chloride ion concentration(Nitrate conversion of ~61 % and nitrogen selectivity of ~57% in 0.005 mol/L NaCl and 0.035 mol/L Na_2 SO_4 mixed electrolyte).This study provides a broad application prospect for further exploring the highefficiency and low-cost iron-based functional nanostructures for electrocatalytic nitrate reduction.  相似文献   

15.
《中国化学快报》2023,34(3):107337
Ammonia is the feedstock chemical for most fertilizers and the alternative of renewable energy carriers. Environmentally benign electrochemical nitrogen reduction reaction (NRR) under mild conditions has been recognized as one of the most attractive strategies for N2 fixation. Herein, inspired by Mo-based nitrogenase, W/Mo-doping electrocatalysts were developed with mixed-metal polyoxometalate H3PW6Mo6O40 as the precursor for high performance electrocatalytic NRR. Trace amount of Pt was transplanted on the surface of W/Mo@rGO via in situ electroplating treatment to further improve the NRR performance. The resulting Pt-W/Mo@rGO-6 achieves excellent performance for NRR with a high NH3 yield of 79.2 µg h?1 mgcat?1 due to the multicomponent synergistic effect in the composite catalyst. The Pt-W/Mo@rGO-6 represents the first example of highly efficient NRR electraocatalyst derived from mixed-metal polyoxometalate, which exhibits outstanding stability confirmed by the constant catalytic performance over 24 h chronoamperometric test. This finding opens a new avenue to construct highly efficient NRR electrocatalyst by employing mixed metal polyoxometalate as the precursor under ambient conditions.  相似文献   

16.
The effect of the carrier on catalytic properties of ruthenium supported catalysts in partial oxidation of methane (POM) was investigated. A variety of supports differed in texture and reducibility (Al2O3, SiO2, TiO2, Cr2O3, CeO2 and Fe2O3) were used. The catalyst activity is governed by ruthenium phase formation (RuO2 → Ru0), and it depends on redox properties of the support as well as support-ruthenium phase interaction. The activity of Ru supported catalysts decreases in the order Al2O3 ≈ SiO2 > Cr2O3 > TiO2 > CeO2 > Fe2O3. No significant effects of the specific surface area and porosity of catalysts on the methane conversion and selectivity of CO formation were found. The selectivity of CO2 formation (total oxidation of CH4) under conditions of POM (a ratio of CH4/O2 = 2) is associated with the contribution of reducible support oxides into the catalytic performance.  相似文献   

17.
Using the Anderson-type heteropoly compounds (HPCs) [X(OH)6Mo6O18] n− (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6− and cobalt (or nickel) nitrate, XMo/Al2O3 and Co(Ni)-XMo/Al2O3 catalysts were prepared. The catalysts were studied by low-temperature nitrogen adsorption, X-ray diffraction, and high-resolution transmission electron microscopy. The average length of the active-phase particles of the catalysts was 3.5 to 3.9 nm, and the average number of MoS2 layers in a packet was 1.4 to 2.1. The catalytic properties of the samples, which were estimated in dibenzothiophene (DBT) hydrodesulfurization and in the hydrotreating of the diesel fraction, are considerably dependent upon both the type and composition of the HPC, and the nature of the applied promoter (Ni or Co). As compared to the Ni-promoted catalysts, the Co-promoted samples exhibit a higher desulfurization activity, whereas the hydrogenation ability of the Ni-XMo/Al2O3 catalysts surpasses that of the Co-XMo/Al2O3 ones. The catalytic properties depend on the morphology of the nanostructured active phase. With a growing number of MoS2 layers in the packet of the catalysts’ active phase, the DBT hydrodesulfurization rate constants for both the direct desulfurization route and the preliminary hydrogenation rote rise linearly and the selectivity falls linearly for the hydrogenation route. The selectivity of Ni-XMo/Al2O3 decreases to a greater extent than that of Co-XMo/Al2O3. The dependences of the catalytic properties on the morphology of the catalysts’ active phase are consistent with the “dynamic” model of the functioning of the active sites of transition metal sulfides.  相似文献   

18.
Keggin型钼钒磷杂多酸催化剂上丙烷选择氧化性能的研究   总被引:6,自引:1,他引:5  
李秀凯  雷宇  江桥  赵静  季伟捷  张志炳  陈懿 《化学学报》2005,63(12):1049-1054
系统研究了不同数目V5+取代的钼钒磷杂多酸H3+nPMo12-nVnO40 (n=0~4)催化剂上丙烷选择氧化反应性能. 通过BET, IR, TPR, 紫外-可见光谱等表征手段对催化剂的理化性质进行了考察, 并对催化剂的结构-性能关系进行了初步关联. 在杂多酸的一级结构中, V5+对Mo6+的取代不仅改变了杂多阴离子金属-氧桥的键强以及晶格氧的插入能力, 而且也相应地调变了样品的酸量. 催化剂活性随V5+取代数量的递增而增强; 适宜数量的V5+取代提高了含氧酸产物的选择性, 而过量的V5+取代则导致部分氧化产物的深度氧化. 考察了在Keggin型杂多酸二级结构上引入钒物种的影响, 也即将钒物种(VO)2+作为抗衡离子取代部分质子以调变催化剂的结构与性质. 实验表明, 处于一级结构和二级结构[(VO)2+抗衡离子]中的V在反应中均可离析出少量V2O5物种. 适宜量的(VO)2+物种以及离析出来的少量V2O5物种可能均对催化剂的性能有贡献. 显然, 钒在不同位置的价态变化以及形态的不同, 会导致催化性能的相应改变.  相似文献   

19.
Natural gas resources, stimulate the method of catalytic methane decomposition. Hydrogen is a superb energy carrier and integral component of the present energy systems, while carbon nanotubes exhibit remarkable chemical and physical properties. The reaction was run at 700 °C in a fixed bed reactor. Catalyst calcination and reduction were done at 500 °C. MgO, TiO2 and Al2O3 supported catalysts were prepared using a co‐precipitation method. Catalysts of different iron loadings were characterized with BET, TGA, XRD, H2‐TPR and TEM. The catalyst characterization revealed the formation of multi‐walled nanotubes. Alternatively, time on stream tests of supported catalyst at 700 °C revealed the relative profiles of methane conversions increased as the %Fe loading was increased. Higher %Fe loadings decreased surface area of the catalyst. Iron catalyst supported with Al2O3 exhibited somewhat higher catalytic activity compared with MgO and TiO2 supported catalysts when above 35% Fe loading was used. CH4 conversion of 69% was obtained utilizing 60% Fe/Al2O3 catalyst. Alternatively, Fe/MgO catalysts gave the highest initial conversions when iron loading below 30% was employed. Indeed, catalysts with 15% Fe/MgO gave 63% conversion and good stability for 1 h time on stream. Inappropriateness of Fe/TiO2 catalysts in the catalytic methane decomposition was observed.  相似文献   

20.
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber-Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2) as an emerging layered two-dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2-based catalysts which have been developed to improve the weak NRR activity of primitive MoS2. Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2-based materials. Finally, an outlook about the optimization of MoS2-based catalysts used in electrochemical N2 fixation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号