共查询到20条相似文献,搜索用时 15 毫秒
1.
Mei Zhang Xian-Feng Hou Li-Hua Qi Yue Yin Qing Li Hai-Xue Pan Xin-Ya Chen Gong-Li Tang 《Chemical science》2015,6(6):3440-3447
Trioxacarcins (TXNs) are highly oxygenated, polycyclic aromatic natural products with remarkable biological activity and structural complexity. Evidence from 13C-labelled precursor feeding studies demonstrated that the scaffold was biosynthesized from one unit of l-isoleucine and nine units of malonyl-CoA, which suggested a different starter unit in the biosynthesis. Genetic analysis of the biosynthetic gene cluster revealed 56 genes encoding a type II polyketide synthase (PKS), combined with a large amount of tailoring enzymes. Inactivation of seven post-PKS modification enzymes resulted in the production of a series of new TXN analogues, intermediates, and shunt products, most of which show high anti-cancer activity. Structural elucidation of these new compounds not only helps us to propose the biosynthetic pathway, featuring a type II PKS using a novel starter unit, but also set the stage for further characterization of the enzymatic reactions and combinatorial biosynthesis. 相似文献
2.
Polyketide biosynthesis is catalyzed by polyketide synthase (PKS) and three types of bacterial PKS are known to date. Feeding experiments with isotope-labeled precursors established the polyketide origin of the macrotetrolides, but the labeling pattern cannot be rationalized according to the established PKS paradigm. Genetic analysis of the macrotetrolide biosynthesis unveiled an unprecedented organization for a polyketide gene cluster that features five genes encoding discrete ketoacyl synthase (KS) and four genes encoding discrete ketoreductase (KR) but lacking an acyl carrier protein (ACP). Macrotetrolide biosynthesis is proposed to involve a novel type II PKS that acts directly on acyl CoA substrates, functions noniteratively, and catalyzes both C-C and C-O bond formation. These findings demonstrate once again Nature's versatility in making complex molecules and suggests new strategies for PKS engineering to further expand the scope and diversity of polyketide library. They also should serve as an inspiration in searching for PKS with novel chemistry for combinatorial biosynthesis. 相似文献
3.
The relative importance of preorganization, selective transition state stabilization and inherent reactivity are assessed through quantum chemical and docking calculations for a sesquiterpene synthase (epi-isozizaene synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the pathway to product, although preorganization and selective binding of the final transition state structure in the multi-step carbocation cascade that forms epi-isozizaene appear to play important roles. 相似文献
4.
Le Sann C Munoz DM Saunders N Simpson TJ Smith DI Soulas F Watts P Willis CL 《Organic & biomolecular chemistry》2005,3(9):1719-1728
A versatile approach for the enantioselective synthesis of functionalised beta-hydroxy N-acetylcysteamine thiol esters has been developed which allows the facile incorporation of isotopic labels. It has been shown that a remarkable reversal of selectivity occurs in the titanium mediated aldol reaction of acyloxazolidinone using either (S)- or (R)-tert-butyldimethylsilyloxybutanal. The aldol products are valuable intermediates in the synthesis of 4-hydroxy-6-substituted delta-lactones. 相似文献
5.
Torsten Roth Vladislav Vasilenko Callum G. M. Benson Hubert Wadepohl Dominic S. Wright Lutz H. Gade 《Chemical science》2015,6(4):2506-2510
A simple, “click” synthetic approach to a new type of hybrid phosph(III)azane/NHC system is described. The presence of the phosphazane P2N2 ring unit, with P atoms flanking the NCN fragment and with this ring perpendicular to the binding site of the NHC, provides unique opportunities for modifying the electronic and steric character of these carbenes. 相似文献
6.
Abe I Oguro S Utsumi Y Sano Y Noguchi H 《Journal of the American Chemical Society》2005,127(36):12709-12716
The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides. 相似文献
7.
Highlights? Cloning and sequencing of the complete xantholipin biosynthesis gene cluster ? Identification of genes for xanthone and methylenedioxy bridge formation ? An unusual C11 ketoreductase for the prearomatic reduction ? Multiple redox tailoring for type II PKS biosynthesis 相似文献
8.
9.
C A Shaw-Reid N L Kelleher H C Losey A M Gehring C Berg C T Walsh 《Chemistry & biology》1999,6(6):385-400
BACKGROUND: EntF is a 142 kDa four domain (condensation-adenylation-peptidyl carrier protein-thioesterase) nonribosomal peptide synthetase (NRPS) enzyme that assembles the Escherichia coli N-acyl-serine trilactone siderophore enterobactin from serine, dihydroxybenzoate (DHB) and ATP with three other enzymes (EntB, EntD and EntE). To assess how EntF forms three ester linkages and cyclotrimerizes the covalent acyl enzyme DHB-Ser-S-PCP (peptidyl carrier protein) intermediate, we mutated residues of the proposed catalytic Ser-His-Asp triad of the thioesterase (TE) domain. RESULTS: The Ser1138-->Cys mutant (kcat decreased 1000-fold compared with wild-type EntF) releases both enterobactin (75%) and linear (DHB-Ser)2 dimer (25%) as products. The His 1271-->Ala mutant (kcat decreased 10,000-fold compared with wild-type EntF) releases only enterobactin, but accumulates both DHB-Ser-O-TE and (DHB-Ser)2-O-TE acyl enzyme intermediates. Electrospray ionization and Fourier transform mass spectrometry of proteolytic digests were used to analyze the intermediates. CONCLUSIONS: These results establish that the TE domain of EntF is both a cyclotrimerizing lactone synthetase and an elongation catalyst for ester-bond formation between covalently tethered DHB-Ser moieties, a new function for chain-termination TE domains found at the carboxyl termini of multimodular NRPSs and polyketide synthases. 相似文献
10.
Zhao Q He Q Ding W Tang M Kang Q Yu Y Deng W Zhang Q Fang J Tang G Liu W 《Chemistry & biology》2008,15(7):693-705
Azinomycin B is a complex natural product containing densely assembled functionalities with potent antitumor activity. Cloning and sequence analysis of the azi gene cluster revealed an iterative type I polyketide synthase (PKS) gene, five nonribosomal peptide synthetases (NRPSs) genes and numerous genes encoding the biosynthesis of unusual building blocks and tailoring steps for azinomycin B production. Characterization of AziB as a 5-methyl-naphthoic acid (NPA) synthase showed a distinct selective reduction pattern in aromatic polyketide biosynthesis governed by bacterial iterative type I PKSs. Heterologous expression established the PKS-post modification route from 5-methyl-NPA to reach the first building block 3-methoxy-5-methyl-NPA. This proposed azinomycin B biosynthetic pathway sets the stage to investigate the enzymatic mechanisms for building structurally unique and pharmaceutically important groups, including the unprecedented azabicyclic ring system and highly active epoxide moiety. 相似文献
11.
Acivicin is a natural product with diverse biological activities. Several decades ago its clinical application in cancer treatment was explored but failed due to unacceptable toxicity. The causes behind the desired and undesired biological effects have never been elucidated and only limited information about acivicin-specific targets is available. In order to elucidate the target spectrum of acivicin in more detail we prepared functionalized derivatives and applied them for activity based proteomic profiling (ABPP) in intact cancer cells. Target deconvolution by quantitative mass spectrometry (MS) revealed a preference for specific aldehyde dehydrogenases. Further in depth target validation confirmed that acivicin inhibits ALDH4A1 activity by binding to the catalytic site. In accordance with this, downregulation of ALDH4A1 by siRNA resulted in a severe inhibition of cell growth and might thus provide an explanation for the cytotoxic effects of acivicin. 相似文献
12.
Nicholson TP Winfield C Westcott J Crosby J Simpson TJ Cox RJ 《Chemical communications (Cambridge, England)》2003,(6):686-687
The minimal actinorhodin polyketide synthase bearing two point mutations (KSbeta Q161A, ACP C17S) was chemically modified to carry novel C4 to C8 starter units on the ACP: on incubation with an excess of malonyl CoA new 16-carbon polyketides are made, supporting a measuring mechanism. 相似文献
13.
Michael J. Katz Su-Young Moon Joseph E. Mondloch M. Hassan Beyzavi Casey J. Stephenson Joseph T. Hupp Omar K. Farha 《Chemical science》2015,6(4):2286-2291
The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However, UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate. 相似文献
14.
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. 相似文献
15.
A reaction-economic combinatorial strategy is described for lead hit identification in catalyst discovery efforts directed towards a specific transformation. Complex mixtures of rationally chosen precatalysts and ligands are screened against various reaction parameters to identify lead conditions in a small number of reactions. Iterative deconvolution of the resulting hits identifies which components contribute to the lead in situ generated catalyst. Application of this strategy rapidly uncovered a new mild in situ generated catalyst for the dehydrative Friedel–Crafts reaction as well as conditions for selective monoarylation in catalytic ortho-C–H arylation of unsubstituted N-(quinolin-8-yl)benzamide. 相似文献
16.
《Chemistry & biology》1997,4(6):433-443
Background: Iterative type II polyketide synthases (PKSs) produce polyketide chains of variable but defined length from a specific starter unit and a number of extender units. They also specify the initial regiospecific folding and cyclization pattern of nascent polyketides either through the action of a cyclase (CYC) subunit or through the combined action of site-specific ketoreductase (KR) CYC CYC subunits. Additional CYCs and other modifications may be necessary to produce linear aromatic polyketides. The principles of the assembly of the linear aromatic polyketides, several of which are medically important, are well understood, but it is not clear whether the assembly of the angular aromatic (angucyclic) polyketides follows the same rules.Results: We performed an in vivo evaluation of the subunits of the PKS responsible for the production of the angucyclic polyketide jadomycin (jad), in comparison with their counterparts from the daunorubicin (dps) and tetracenomycin (tcm) PKSs which produce linear aromatic polyketides. No matter which minimal PKS was used to produce the initial polyketide chain, the JadD and DpsF CYCs produced the same two polyketides, in the same ratio; neither product was angularly fused. The set of jadABCED PKS plus putative jadl CYC genes behaved similarly. Furthermore, no angular polyketides were isolated when the entire set of jad PKS enzymes and Jadl or the jad minimal PKS, Jadl and the TcmN CYC were present. The DpsE KR was able to reduce decaketides but not octaketides; in contrast, the KRs from the jad PKS (JadE) or the actinorhodin PKS (ActIII) could reduce octaketide chains, giving three distinct products.Conclusions: It appears that the biosynthesis of angucyclic polyketides cannot be simply accomplished by expressing the known PKS subunits from artificial gene cassettes under the control of a non-native promoter. The characteristic structure of the angucycline ring system may arise from a kinked precursor during later cyclization reactions involving additional, but so far unknown, components of the extended decaketide PKS. Our results also suggest that some KRs have a minimal chain length requirement and that CYC enzymes may act aberrantly as first-ring aromatases that are unable to perform all of the sequential cyclization steps. Both of these characteristics may limit the widespread application of CYC or KR enzymes in the synthesis of novel polyketides. 相似文献
17.
Nobutaka Fujieda Jonas Sch?tti Edward Stuttfeld Kei Ohkubo Timm Maier Shunichi Fukuzumi Thomas R. Ward 《Chemical science》2015,6(7):4060-4065
As an alternative to Darwinian evolution relying on catalytic promiscuity, a protein may acquire auxiliary function upon metal binding, thus providing it with a novel catalytic machinery. Here we show that addition of cupric ions to a 6-phosphogluconolactonase 6-PGLac bearing a putative metal binding site leads to the emergence of peroxidase activity (kcat 7.8 × 10–2 s–1, KM 1.1 × 10–5 M). Both X-ray crystallographic and EPR data of the copper-loaded enzyme Cu·6-PGLac reveal a bis-histidine coordination site, located within a shallow binding pocket capable of accommodating the o-dianisidine substrate. 相似文献
18.
Initial characterization of a type I fatty acid synthase and polyketide synthase multienzyme complex NorS in the biosynthesis of aflatoxin B(1) 总被引:1,自引:0,他引:1
The biosynthesis of the potent environmental carcinogen aflatoxin B(1) is initiated by norsolorinic acid synthase (NorS), a complex of an iterative type I polyketide synthase and a specialized yeast-like pair of fatty acid synthases. NorS has been partially purified from Aspergillus parasiticus, has been found to have a mass of approximately 1.4 x 10(6) Da, and carries out the synthesis of norsolorinic acid in the presence of acetylCoA, malonylCoA, and NADPH where hexanoylCoA is not a free intermediate. The N-acetylcysteamine thioester of hexanoic acid can substitute for the catalytic functions of HexA/B to initiate norsolorinic acid synthesis by the complex in the presence of only malonylCoA. An alpha(2)beta(2)gamma(2) stoichiometry is proposed for NorS in keeping with its estimated mass and the observed dimeric or higher-order quarternary structures of PKS and FAS enzymes. 相似文献
19.
Jinjun Wu Heng Xiao Tianlu Wang Tingting Hong Boshi Fu Dongsheng Bai Zhiyong He Shuang Peng Xiwen Xing Jianlin Hu Pu Guo Xiang Zhou 《Chemical science》2015,6(5):3013-3017
N 6-Methyladenosine (m6A) represents a relatively abundant modification in eukaryotic RNA. Because m6A has similar properties to adenosine and a low reactivity, limited research has been focused on this nucleoside. In this study, we revealed an important intermediate in the oxidation of m6A through the bicarbonate-activated peroxide system. Over the course of oxidation, we found a new mechanism in which N6-hydroxymethyladenosine (hm6A), N6-formyladenosine (f6A) and N6-hydroperoxymethyladenosine (oxm6A) were intermediate products, and adenosine was the final product. In this study, oxm6A was isolated using HPLC and characterized by mass spectrometry, NMR and diphenyl-1-pyrenylphosphine (DPPP) fluorescence detection. This study provides a new modified nucleoside and demonstrates oxidative demethylation of m6A by reactive oxygen species at the nucleobase level and in RNA strands. 相似文献
20.
Claire Simonneau Bérénice Leclercq Alexandra Mougel Eric Adriaenssens Charlotte Paquet Laurent Raibaut Nathalie Ollivier Hervé Drobecq Julien Marcoux Sarah Cianférani David Tulasne Hugo de Jonge Oleg Melnyk Jér?me Vicogne 《Chemical science》2015,6(3):2110-2121
The development of MET receptor agonists is an important goal in regenerative medicine, but is limited by the complexity and incomplete understanding of its interaction with HGF/SF (Hepatocyte Growth Factor/Scatter Factor). NK1 is a natural occurring agonist comprising the N-terminal (N) and the first kringle (K1) domains of HGF/SF. In the presence of heparin, NK1 can self-associate into a “head to tail” dimer which is considered as the minimal structural module able to trigger MET dimerization and activation whereas isolated K1 and N domains showed a weak or a complete lack of agonistic activity respectively. Starting from these structural and biological observations, we investigated whether it was possible to recapitulate the biological properties of NK1 using a new molecular architecture of isolated N or K1 domains. Therefore, we engineered multivalent N or K1 scaffolds by combining synthetic and homogeneous site-specifically biotinylated N and K1 domains (NB and K1B) and streptavidin (S). NB alone or in complex failed to activate MET signaling and to trigger cellular phenotypes. Importantly and to the contrary of K1B alone, the semi-synthetic K1B/S complex mimicked NK1 MET agonist activity in cell scattering, morphogenesis and survival phenotypic assays. Impressively, K1B/S complex stimulated in vivo angiogenesis and, when injected in mice, protected the liver against fulminant hepatitis in a MET dependent manner whereas NK1 and HGF were substantially less potent. These data reveal that without N domain, proper multimerization of K1 domain is a promising strategy for the rational design of powerful MET agonists. 相似文献