首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ilias M. Mahmud 《Tetrahedron》2008,64(50):11420-11432
A series of Fréchet-type dendron functionalized [60]fullerene derivatives that bear a 1,2,3-triazole linkage group, referred to as triazole-linked dendro[60]fullerenes, were prepared via a modular synthetic protocol based on a Cu-catalyzed [3+2] cycloaddition (‘click’) reaction. Electronic properties of these dendro[60]fullerenes were investigated by UV-vis spectroscopy and cyclic voltammetry. Interfacial supramolecular self-assembly behavior of these dendro[60]fullerenes was studied using atomic force microscopy (AFM). The resulting self-assemblies showed different nanoscale packing geometries and morphologies on the surface, which are controllable by parameters such as the generation of dendron, the nature of peripheral functionalities, and the experimental conditions (e.g., acidity) applied. Correlations between molecular structure and self-assembling outcome were surveyed and discussed. The results of this study suggest a new avenue to gain better ‘bottom-up’ control over the self-assembly of dendrimer-fullerene hybrid materials in terms of shape and size.  相似文献   

2.
Bis‐[60]fullerodendrimers were synthesized by assembling [60]fullerene‐containing type I (terminal olefin) and type II (α,β‐unsaturated carbonyl olefin) olefins through the olefin cross‐metathesis reaction. The synthetic modular approach developed in this study allowed the preparation of mono‐[60]fullerodendrimers and their [60]fullerene‐free analogues. First‐ and second‐generation poly(aryl ester) dendrons carrying cyanobiphenyl mesogens were used as liquid‐crystalline promoters. The liquid‐crystalline properties were studied by polarized optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering. In agreement with the nature and structure of the dendrimers, nematic, smectic, and multisegregated lamellar phases were observed. Owing to its versatility and tolerance towards many functional groups, olefin cross‐metathesis proved to be a reaction of choice for the elaboration of molecular materials with complex architectures.  相似文献   

3.
Supramolecular interactions of 24,26-dimethoxy-25,27-dihydroxy calix[4]arene (1) with [60]- and [70]fullerenes have been studied in only chloroform and in a ternary solvent mixture comprising of chloroform, ethyl alcohol and toluene by UV-vis absorption spectrophotometric method. The experimental results are explained using the model that takes into account the interaction between electronic subsystems of 1 and fullerene. The most interesting feature is the preference of [60]fullerene over [70]fullerene for 1 in ternary solvent mixture as revealed by higher value of formation constant of [60]fullerene/1 complex. The selectivity towards [60]fullerene opens up the way toward self-assembling systems and new separation and purification methods for fullerenes.  相似文献   

4.
Fullerene‐based liquid crystalline materials have both the excellent optical and electrical properties of fullerene and the self‐organization and external‐field‐responsive properties of liquid crystals (LCs). Herein, we demonstrate a new family of thermotropic [60]fullerene supramolecular LCs with hierarchical structures. The [60]fullerene dyads undergo self‐organization driven by π–π interactions to form triple‐layer two‐dimensional (2D) fullerene crystals sandwiched between layers of alkyl chains. The lamellar packing of 2D crystals gives rise to the formation of supramolecular LCs. This design strategy should be applicable to other molecules and lead to an enlarged family of 2D crystals and supramolecular liquid crystals.  相似文献   

5.
General, efficient and inexpensive methods for the synthesis of dendritic building blocks methyl 3',4'-dihydroxybiphenyl-4-carboxylate, 3',5'-dihydroxybiphenyl-4-carboxylate, and methyl 3',4',5'-trihydroxybiphenyl-4-carboxylate were elaborated. In all syntheses the major step involved an inexpensive Ni(II)-catalyzed Suzuki cross-coupling reaction. These three building blocks were employed together with methyl 4'-hydroxybiphenyl-4-carboxylate in a convergent iterative strategy to synthesize seven libraries containing up to three generations of 3',4'-, 3',5'-, and 3',4',5'-substituted biphenyl-4-methyl ether based amphiphilic dendrons. These dendrons self-assemble into supramolecular dendrimers that self-organize into periodic assemblies. Structural and retrostructural analysis of their assemblies demonstrated that these dendrons self-assemble into hollow and non-hollow supramolecular dendrimers exhibiting dimensions of up to twice those reported for architecturally related dendrons based on benzyl ether repeat units. These new dendrons expand the structural diversity and demonstrate the generality of the concept of self-assembling dendrons based on amphiphilic arylmethyl ethers.  相似文献   

6.
The synthesis of a library containing 12 conical dendrons that self-assemble into hollow spherical supramolecular dendrimers is reported. The design principles for this library were accessed by development of a method that allows the identification of hollow spheres, followed by structural and retrostructural analysis of their Pm3n cubic lattice. The first hollow spherical supramolecular dendrimer was made by replacing the tapered dendron, from the previously reported tapered dendritic dipeptide that self-assembled into helical pores, with its constitutional isomeric conical dendron. This strategy generated a conical dendritic dipeptide that self-assembled into a hollow spherical supramolecular dendrimer that self-organizes in a Pm3n cubic lattice. Other examples of hollow spheres were assembled from conical dendrons without a dipeptide at their apex. These are conical dendrons originated from tapered dendrons containing additional benzyl ether groups at their apex. The inner part of the hollow sphere assembled from the dipeptide resembles the path of a spherical helix or loxodrome and, therefore, is chiral. The spheres assembled from other conical dendrons are nonhelical, even when they contain stereocenters on the alkyl groups from their periphery. Functionalization of the apex of the conical dendrons with diethylene glycol allowed the encapsulation of LiOTf and RbOTf in the center of the hollow sphere. These experiments showed that hollow spheres function as supramolecular dendritic capsules and therefore are expected to display functions complementary to those of other related molecular and supramolecular structures.  相似文献   

7.
We report herein a series of tetrablock‐mimic azobenzene‐containing [60]fullerene dyads that form supramolecular liquid crystals (LCs) from phase‐segregated two‐dimensional (2D) crystals. The unique double‐, triple‐, and quadruple‐layer packing structure of fullerenes in the 2D crystals leads to different smectic supramolecular LC phases, and novel LC phase transitions were observed upon changes in the fullerene packing layer number in the 2D crystals. Interestingly, by combining the LC properties with 2D crystals, these materials show excellent electron mobility in the order of 10−3 cm2 V−1 s−1, despite their relatively low fullerene content. Our results provide a novel method to manipulate 2D crystal layer thickness, with promising applications in optoelectronic devices.  相似文献   

8.
Though [60]fullerene is an achiral molecular nanocarbon with Ih symmetry, it could attain an inherent chirality depending upon a functionalization pattern. The conventional chiral induction of C60 relies mainly upon a multiple addition affording a mixture of achiral and chiral isomers while their chiral function would be largely offset by the existence of pseudo-mirror plane(s). These are major obstacles to proceed further study on fullerene chirality and yet leave its understanding elusive. Herein, we showcase a carbene-mediated synthesis of C1-symmetric chiral open [60]fullerenes showing an intense far-red to near-infrared absorption. The large dissymmetry factor of |gabs|=0.12 was achieved at λ=820 nm for circular dichroism in benzonitrile. This is, in general, unachievable by other small chiral organic molecules, demonstrating the potential usage of open [60]fullerenes as novel types of chiral chromophores.  相似文献   

9.
To design and exploit novel macrocyclic synthetic receptors is a permanent and challenging topic in supramolecular chemistry. Here we describe the one-pot synthesis, unique geometries and intriguing host–guest properties of a new class of supramolecular macrocycles – biphen[n]arenes (n = 3, 4), which are made up of 4,4′-biphenol or 4,4′-biphenol ether units linked by methylene bridges at the 3- and 3′- positions. The biphenarene macrocycles are conveniently accessible/modifiable and extremely guest-friendly. Particularly, biphen[4]arene is capable of forming inclusion complexes with not only organic cationic guests but also neutral π-electron deficient molecules. Compared with calixarenes, resorcinarenes, cyclotriveratrylenes and pillararenes with substituted mono-benzene units, the biphen[n]arenes reported here possess significantly different characteristics in both their topologic structures and their recognition properties, and thus can find broad applications in supramolecular chemistry and other areas.  相似文献   

10.
Wong CH  Chow HF  Hui SK  Sze KH 《Organic letters》2006,8(9):1811-1814
[reaction: see text] A new series of self-assembling G1-G3 dendronized dimers bearing oligoether dendrons and a dimeric 2-ureido-4-pyrimidinone (UPy) quadruple hydrogen-bonding core were prepared and characterized. It was found that the nonpolar microenvironment created by the dendrons preserved the UPy unit in its DDAA tautomeric form. As a result, the stabilities of the dimers were exceptionally strong for all three generations (K(dim) > 2 x 10(7) M(-)(1) in CDCl(3) at 25 degrees C). Furthermore, the steric size of the dendrons did not exhibit a significant effect on their dimerization behavior.  相似文献   

11.
A biscalix[5]arene–C60 supramolecular structure was utilized for the development of supramolecular fullerene polymers. Di‐ and tritopic hosts were developed to generate the linear and network supramolecular polymers through the complexation of a dumbbell‐shaped fullerene. The molecular association between the hosts and the fullerene were carefully studied by using 1H NMR, UV/Vis absorption, and fluorescence spectroscopy. The formation of the supramolecular fullerene polymers and networks was confirmed by diffusion‐ordered 1H NMR spectroscopy (DOSY) and solution viscometry. Upon concentrating the mixtures of di‐ or tritopic hosts and dumbbell‐shaped fullerene in the range of 1.0–10 mmol L?1, the diffusion coefficients of the complexes decreased, and the solution viscosities increased, suggesting that large polymeric assemblies were formed in solution. Scanning electron microscopy (SEM) was used to image the supramolecular fullerene polymers and networks. Atomic force microscopy (AFM) provided insight into the morphology of the supramolecular polymers. A mixture of the homoditopic host and the fullerene resulted in fibers with a height of (1.4±0.1) nm and a width of (5.0±0.8) nm. Interdigitation of the alkyl side chains provided secondary interchain interactions that facilitated supramolecular organization. The homotritopic host generated the supramolecular networks with the dumbbell‐shaped fullerene. Honeycomb sheet‐like structures with many voids were found. The growth of the supramolecular polymers is evidently governed by the shape, dimension, and directionality of the monomers.  相似文献   

12.
Self-assembly is the most powerful force for creating ordered supramolecular architectures from simple components under mild conditions. π···π stacking interactions have been widely explored in modern supramolecular chemistry as an attractive reversible noncovalent tool for the nondestructive fabrication of materials for different applications. Here, we report on the self-assembly of cytidine 5’-monophosphate (CMP) nucleotide and copper metal ions for the preparation of a rare nanoporous supramolecular metal-organic framework in water. π···π stacking interactions involving the aromatic groups of the ancillary 2,2’-bipyridine (bipy) ligands drive the self-assemblies of hexameric pseudo-amphiphilic [Cu6(bipy)6(CMP)2(µ-O)Br4]2+ units. Owing to the supramolecular geometric matching between the aromatic tails, a nanoporous crystalline phase with hydrophobic and hydrophilic chiral pores of 1.2 and 0.8 nanometers, respectively, was successfully synthesized. The encoded chiral information, contained on the enantiopure building blocks, is transferred to the final supramolecular structure, assembled in the very unusual topology 8T6. These kinds of materials, owing to chiral channels with chiral active sites from ribose moieties, where the enantioselective recognition can occur, are, in principle, good candidates to carry out efficient separation of enantiomers, better than traditional inorganic and organic porous materials.  相似文献   

13.
We report the synthesis of methyl esters of 3-(4-hydroxyphenyl)propionic, 3-(3,4-dihydroxyphenyl)propionic, 3-(3,5-dihydroxyphenyl)propionic, and 3-(3,4,5-trihydroxyphenyl)propionic acids and their use in a convergent iterative strategy to prepare up to four generations of three libraries, one of 3,4,5- and two of constitutional isomeric 3,4- and 3,5-substituted 3-phenylpropyl dendrons. Each library contains 3-[3,4,5-tris(dodecyl-1-oxy)phenyl]propyl-, 3-[3,4-bis(dodecyl-1-oxy)phenyl]propyl-, 3-{3,4-bis[3-(4-dodecyl-1-oxyphenyl)propyl-1-oxy]phenyl}propyl-, and 3-{3,4,5-tris[3-(4-dodecyl-1-oxyphenyl)propyl-1-oxy]phenyl}propyl ether first-generation dendrons on their periphery and -CO2CH3, -COOH, and -CH2OH groups at their apex. Regardless of their generation number and their periphery, internal, and apex structures, these dendrons self-assemble into supramolecular dendrimers that self-organize into all periodic and quasi-periodic assemblies encountered previously and in several unencountered with architecturally related benzyl ether-based supramolecular dendrimers. A variety of porous columnar lattices that were previously obtained only from dendritic dipeptides and hollow supramolecular spheres were also discovered from these building blocks. The more flexible and less compact 3-phenylpropyl ether repeat units are stable under acidic conditions, facilitate a simpler synthetic strategy, provide faster dynamics of self-assembly into higher-order supramolecular structures of larger dimensions, exhibit lower transition temperatures than the corresponding benzyl ether homologues, and demonstrate the generality of the self-assembly concept based on amphiphilic dendrons.  相似文献   

14.
Semifluorinated first-generation self-assembling dendrons attached via a flexible spacer to electron-donor molecules induce pi-stacking of the donors in the center of a supramolecular helical pyramidal column. These helical pyramidal columns self-organize in various columnar liquid crystal phases that mediate self-processing of large single crystal liquid crystal domains of columns and self-repair their intracolumnar structural defects. In addition, all supramolecular columns exhibit a columnar phase at lower temperatures that maintains the helical pyramidal columnar supramolecular structure and displays higher intracolumnar order than that in the liquid crystals phases. The results described here demonstrate the universality of this concept, the power of the fluorous phase or the fluorophobic effect in self-assembly and the unexpected generality of pyramidal liquid crystals.  相似文献   

15.
[structure: see text] [60]Fullerene was functionalized with a TTF derivative and a bis-mesogenic fragment. The synthetic methodology was based on the addition of a malonate derivative to C60 (Bingel-type reaction). Both the malonate and dyad showed smectic B and A phases. The supramolecular organization within the smectic layers was of the monolayer type for the malonate and of the bilayer type for the fullerene derivative. In the latter case, the supramolecular organization was governed by the C60 unit.  相似文献   

16.
This review addresses the key principles underlying the formation of liquid crystalline phases based on wedge-shaped and cone-shaped dendrons of different chemical nature. Despite rich phase diversity of the above systems, the development of a mesophase can be reliably predicted by the geometric model, which compares the shape of a wedge dendron with the radial density distribution in the relevant Voronoi polyhedra. 2D columnar phases formed by chiral [7]-heterohelicene molecules with long aliphatic side chains are described in detail. The as-formed columnar aggregates are shown to possess a helical 132 symmetry and are composed of thirteen blocks, and each block involves six molecules. In this case, the internal structure of the first-level (lower) supramolecular aggregate appears to be different from that of the helical supramolecular structure.  相似文献   

17.
The synthesis and structural analysis of polymers dendronized with self-assembling Janus dendrimers containing one fluorinated and one hydrogenated dendrons are reported. Janus dendrimers were attached to the polymer backbone both from the hydrogenated and from the fluorinated parts of the Janus dendrimer. Structural analysis of these dendronized polymers and of their precursors by a combination of differential scanning calorimetry, X-ray diffraction experiments on powder and oriented fibers, and electron density maps have demonstrated that in both cases the dendronized polymer consists of a vesicular columnar structure containing fluorinated alkyl groups on its periphery. This vesicular columnar structure is generated by a mechanism that involves the intramolecular assembly of the Janus dendrimers into tapered dendrons followed by the intramolecular self-assembly of the resulting dendronized polymer in a vesicular column. By contrast with conventional polymers dendronized with self-assembling tapered dendrons this new class of dendronized polymers acts as thermal actuators that decrease the length of the supramolecular column when the temperature is increased and therefore, are called reverse thermal actuators. A mechanism for this reversed process was proposed.  相似文献   

18.
ABSTRACT

Liquid-crystalline [60]fullerodendrimers were constructed via click chemistry based on the reaction between hexa-adducts of [60]fullerene (C60) bearing 12 azide groups and alkyne-terminated cyanobiphenyl dendrons of first- and second-generation. The structure of all the new compounds was confirmed by IR, UV, 1H and 13C NMR spectroscopies and mass spectrometry. The mesomorphic properties were studied by polarised optical microscopy, differential scanning calorimetry and small-angle X-ray scattering. The hexa-adduct of C60 functionalised with the first-generation dendrons gave rise to the formation of a smectic A phase and a rectangular columnar phase (c2mm symmetry) while the hexa-adduct of C60 decorated with the second-generation dendrons displayed only a rectangular columnar phase (c2mm symmetry). Our results show that the hexa-adduct of C60 is a unique synthetic platform for the design of fullerodendrimers and dendronised materials.  相似文献   

19.
A second-generation cyanobiphenyl-based dendrimer was used as a liquid-crystalline promoter to synthesize mesomorphic bisadducts of [60]fullerene. Liquid-crystalline trans-2, trans-3, and equatorial bisadducts were obtained by condensation of the liquid-crystalline promoter, which carries a carboxylic acid function, with the corresponding bisaminofullerene derivatives. A monoadduct of fullerene was also prepared for comparative purposes. All the compounds gave rise to smectic A phases. An additional mesophase, which could not be identified, was observed for the trans-2 derivative. The supramolecular organization of the monoadduct derivative is governed by steric constraints. Indeed, for efficient space filling, adequacy between the cross-sectional areas of fullerene (approximately 100 A(2)) and of the mesogenic groups (approximately 22-25 A(2) per mesogenic group) is required. As a consequence, the monoadduct forms a bilayered smectic A phase. The supramolecular organization of the bisadducts is essentially governed by the nature and structure of the mesogenic groups and dendritic core. Therefore, the bisadducts form monolayered smectic A phases. The title compounds are promising supramolecular materials as they combine the self-organizing behavior of liquid crystals with the properties of fullerene.  相似文献   

20.
The influence of chirality in calixarene threading has been studied by exploiting the “superweak anion approach”. In particular, the formation of chiral pseudo[2]rotaxanes bearing a classical stereogenic center in their axle and/or wheel components has been considered. Two kind of pseudo[2]rotaxane stereoadducts, the “endo-chiral” and “exo-chiral” ones, having the stereogenic center of a cationic axle inside or outside, respectively, the calix-cavity of a chiral calixarene were preferentially formed with specifically designed chiral axles by a fine exploitation of the so-called “endo-alkyl rule” and a newly defined “endo-α-methyl-benzyl rule” (threading of a hexaalkoxycalix[6]arene with a directional (α-methyl-benzyl)benzylammonium axle occurs with an endo-α-methyl-benzyl preference). The obtained pseudorotaxanes were studied in solution by 1D and 2D NMR, and in the gas-phase by means of the enantiomer-labeled (EL) mass spectrometry method, by combining enantiopure hosts with pseudoracemates of one deuterated and one unlabeled chiral axle enantiomer. In both instances, there was not a clear enantiodiscrimination in the threading process with the studied host/guest systems. Possible rationales are given to explain the scarce reciprocal influence between the guest and host chiral centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号