共查询到9条相似文献,搜索用时 0 毫秒
1.
This paper considers an unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system, in which the intelligent reflecting surface (IRS) is applied to enhance the performance of the wireless transmission. The role of the UAV is twofold: (1) It is equipped with a MEC server and receives computing tasks from ground users and IRS at the same time; (2) It sends interference signals to counter the potential eavesdropper. Here, the UAV is working as a full duplex equipment, i.e., sending and receiving meanwhile. We comprehensively considered the flight speed constraint of the UAV, the total mission data constraint and the minimum security rate constraint of multiple users on the ground. The phase matrix constraints of IRS are also considered. Our system is dedicated to maximizing the efficiency of secure computing. The formulated problem is highly non-convex, we consider to propose an alternative optimization algorithm. The simulation results show that the proposed scheme not only achieves higher safe computing efficiency, but also has better performance in terms of energy consumption and security rate. 相似文献
2.
In this paper, we consider the latency minimization problem via designing intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) networks. For the scene when local users cannot complete all computing tasks independently, a common solution is transferring tasks to cloud servers. We consider that the MEC system contains multiple independent users, and each user sends task data to the base station in a partially offloaded manner. Our goal is to minimize the maximum latency for all users. The original problem is strongly non-convex, which caused difficulty to solve. We first introduce a new variable to transform the max–min problem into an alternative minimization problem, and then solve each optimization variable separately by the block coordinate descent method. Finally, our simulation experiments demonstrate that our proposed scheme obtain better performance with respect to other existing schemes. 相似文献
3.
Computation offloading in mobile edge computing (MEC) systems emerges as a novel paradigm of supporting various resource-intensive applications. However, the potential capabilities of MEC cannot be fully unleashed when the communication links are blocked by obstacles. This paper investigates a double-reconfigurable-intelligent-surfaces (RISs) assisted MEC system. To efficiently utilize the limited frequency resource, the users can partially offload their computational tasks to the MEC server deployed at base station (BS) by adopting non-orthogonal multiple access (NOMA) protocol. We aim to minimize the energy consumption of users with limited resource by jointly optimizing the transmit power of users, the offloading fraction of users and the phase-shifts of RISs. Since the problem is non-convex with highly coupled variables, the block coordinate descent (BCD) method is leveraged to alternatively optimize the decomposed four subproblems. Specifically, we invoke successive convex approximation for low complexity (SCALE) and Dinkelbach technique to tackle the fractional programming of power optimization. Then the offloading fraction is obtained by closed-form solution. Further, we leverage semidefinite relaxation (SDR) and bisection method to address the phase-shifts design of double RISs. Finally, numerical results illustrate that the proposed double-RIS assisted NOMA scheme is capable of efficiently reducing the energy consumption and achieves significant performance gain over the benchmark schemes. 相似文献
4.
In this paper, we focus on minimizing energy consumption under the premise of ensuring the secure offloading of ground users. We used dual UAVs and intelligent reflective surfaces (IRS) to assist ground users in offloading tasks. Specifically, one UAV is responsible for collecting task data from ground users, and the other UAV is responsible for sending interference noise to counter potential eavesdroppers. The IRS can not only improve the transmission capacity of ground users, but also reduce the acceptance of eavesdroppers. The original problem is strong non-convex, so we consider using the block coordinate descent method. For the proposed sub-problems, we use Lagrangian duality and first-order Taylor expansion to obtain the results, and finally achieve system design through alternate optimization. The simulation results show that our proposed scheme is significantly better than other existing schemes. 相似文献
5.
In this paper, we investigate an intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) network under physical-layer security, where users can partially offload confidential and compute-intensive tasks to a computing access point (CAP) with the help of the IRS. We consider an eavesdropping environment, where an eavesdropper steals information from the communication. For the considered MEC network, we firstly design a secure data transmission rate to ensure physical-layer security. Moreover, we formulate the optimization target as minimizing the system cost linearized by the latency and energy consumption (ENCP). In further, we employ a deep deterministic policy gradient (DDPG) to optimize the system performance by allocating the offloading ratio and wireless bandwidth and computational capability to users. Finally, considering the impacts from different resources, based on DDPG, seeing our optimization strategy as one criterion, we designed other criteria with different resource allocation schemes. And some simulation results are given to demonstrate that our proposed criterion outperforms other criteria. 相似文献
6.
This paper investigates the physical layer security of an intelligent reflecting surface (IRS) aided non-orthogonal multiple access (NOMA) networks, where a remote user is regarded as an eavesdropper to intercept the information of nearby user. To evaluate the security performance of IRS-aided NOMA networks, a problem of maximizing achievable secrecy rate is formulated via jointly optimizing the beamforming and phase shifting. More specifically, we aim to tackle the non-convex problem by optimizing beamforming vector as well as phase shifting matrix with the assistance of block coordinate descent (BCD) and minorization maximization (MM) algorithms. Numerical results illustrate that: 1) The secrecy rates of IRS-aided NOMA with BCD and MM algorithms are superior to that of orthogonal multiple access schemes; 2) With increasing the number of reflecting elements, the secrecy rates of IRS-aided NOMA networks are achieved carefully; and 3) The IRS-aided NOMA networks are capable of relieving the transmission pressure of base station. 相似文献
7.
Computational efficiency is a direction worth considering in moving edge computing (MEC) systems. However, the computational efficiency of UAV-assisted MEC systems is rarely studied. In this paper, we maximize the computational efficiency of the MEC network by optimizing offloading decisions, UAV flight paths, and allocating users’ charging and offloading time reasonably. The method of deep reinforcement learning is used to optimize the resources of UAV-assisted MEC system in complex urban environment, and the user’s computation-intensive tasks are offloaded to the UAV-mounted MEC server, so that the overloaded tasks in the whole system can be alleviated. We study and design a framework algorithm that can quickly adapt to task offload decision making and resource allocation under changing wireless channel conditions in complex urban environments. The optimal offloading decisions from state space to action space is generated through deep reinforcement learning, and then the user’s own charging time and offloading time are rationally allocated to maximize the weighted sum computation rate. Finally, combined with the radio map to optimize the UAC trajectory to improve the overall weighted sum computation rate of the system. Simulation results show that the proposed DRL+TO framework algorithm can significantly improve the weighted sum computation rate of the whole MEC system and save time. It can be seen that the MEC system resource optimization scheme proposed in this paper is feasible and has better performance than other benchmark schemes. 相似文献
8.
This article examines a multi-user mobile edge computing (MEC) system for the Internet of Vehicle (IoV), where one edge point (EP) nearby the vehicles can help assist in processing the compute-intensive tasks. For the MEC networks, the majority of existing works concentrate on the minimization of system cost of task offloading under the perfect channel estimation, which however fails to consider the practical limitation of imperfect channel estimation (CSI) because of vehicles’ high-mobility. Therefore, the goal of our study is to reduce the delay as well as energy consumption (EC) of computation and communication with imperfect CSI, which are the two significant performance metrics of MEC network. With this aim, we first express the system cost as a form of the linear combination of the delay and EC, and then formulate the optimization problem for the system cost. Moreover, a novel deep approach is proposed, which is integrated by deep reinforcement learning (DRL) with the Lagrange multiplier to jointly minimize the system cost. In particular, the DRL algorithm is employed to obtain the capable offloading strategy, while the Lagrange multiplier is used to obtain the bandwidth allocation. The simulated results are finally presented to show that the devised approach outperforms the traditional ones. 相似文献
9.
Intelligent reflecting surface (IRS)-enhanced dynamic spectrum access (DSA) is a promising technology to enhance the performance of the mobile edge computing (MEC) system. In this paper, we consider the integration of the IRS enhanced DSA technology to a MEC system, and study the pertinent joint optimization of the phase shift coefficients of the IRS, the transmission powers, the central processing unit (CPU) frequencies, as well as the task offloading time allocations of the secondary users (SUs) to maximize the average computation bits of the SUs. Due to the non-convexity, the formulated problem is difficult to solve. In order to tackle this difficulty, we decompose the optimization problem into tractable subproblems and propose an alternating optimization algorithm to optimize the optimization variables in an iterative fashion. Numerical results are provided to show the effectiveness and the correctness of the proposed algorithm. 相似文献