首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the intramolecular glycosylation of alcohols is described. Utilizing carbohydrate-derived silanes, the catalytic dehydrogenative silylation of alcohols is followed by intramolecular glycosylation. Appropriate combinations of silane position and protecting groups allow highly selective access to β-manno, α-gluco, or β-gluco stereochemical relationships as well as 2-azido-2-deoxy-β-gluco- and 2-deoxy-β-glucosides. Intramolecular aglycone delivery from the C-2 or C-6 position provides 1,2-cis or 1,2-trans glycosides, respectively. Multifunctional acceptor substrates such as hydroxyketones and diols are tolerated and are glycosylated in a site-selective manner.  相似文献   

2.
Cooperative supramolecular polymerization of π-conjugated compounds into one-dimensional nanostructures has received tremendous attentions in recent years. It is commonly achieved by incorporating amide linkages into the monomeric structures, which provide hydrogen bonds for intermolecular non-covalent complexation. Herein, the effect of amide linkages is elaborately studied, by comparing supramolecular polymerization behaviors of two structurally similar monomers with the same platinum(II) acetylide cores. As compared to the N-phenyl benzamide linkages, N-[(1S)-1-phenylethyl] benzamide linkages give rise to effective chirality transfer behaviors due to the closer distances between the chiral units and the platinum(II) acetylide core. They also provide stronger intermolecular hydrogen bonding strength, which consequently brings higher thermo-stability and enhanced gelation capability for the resulting supramolecular polymers. Supramolecular polymerization is further strengthened by varying the monomers from monotopic to ditopic structures. Hence, with the judicious modulation of structural parameters, the current study opens up new avenues for the rational design of supramolecular polymeric systems.  相似文献   

3.
Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-β-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvβ3 and α5β1 receptors using biotinylated vitronectin (αvβ3) and fibronectin (α5β1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvβ3 over α5β1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvβ3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVβ3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.  相似文献   

4.
A study on the reactivity of 3-amino α,β-unsaturated γ-lactam derivatives obtained from a multicomponent reaction is presented. Key features of the substrates are the presence of an endocyclic α,β-unsaturated amide moiety and an enamine functionality. Following different synthetic protocols, the functionalization at three different positions of the lactam core is achieved. In the presence of a soft base, under thermodynamic conditions, the functionalization at C-4 takes place where the substrates behave as enamines, while the use of a strong base, under kinetic conditions, leads to the formation of C-5-functionalized γ-lactams, in the presence of ethyl glyoxalate, through a highly diastereoselective vinylogous aldol reaction. Moreover, the nucleophilic addition of organometallic species allows the functionalization at C-3, through the imine tautomer, affording γ-lactams bearing tetrasubstituted stereocenters, where the substrates act as imine electrophiles. Taking into account the advantage of the presence of a chiral stereocenter in C-5 substituted γ-lactams, further diastereoselective transformations are also explored, leading to novel bicyclic substrates holding a fused γ and δ-lactam skeleton. Remarkably, an example of a highly stereoselective formal [3+3] cycloaddition reaction of chiral γ-lactam substrates is reported for the synthesis of 1,4-dihidropyridines, where a non-covalent attractive interaction of a carbonyl group with an electron-deficient arene seems to drive the stereoselectivity of the reaction to the exclusive formation of the cis isomer. In order to unambiguously determine the substitution pattern resulting from the diverse reactions, an extensive characterization of the substrates is detailed through 2D NMR and/or X-ray experiments. Likewise, applications of the substrates as antiproliferative agents against lung and ovarian cancer cells are also described.  相似文献   

5.
Candida antarctica lipase B-catalyzed hydrolysis of carbocyclic 5–8-membered cis β-amino esters was carried out in green organic media, under solvent-free and ball-milling conditions. In accordance with the high enantioselectivity factor (E > 200) observed in organic media, the preparative-scale resolutions of β-amino esters were performed in tBuOMe at 65 °C. The unreacted β-amino ester enantiomers (1R,2S) and product β-amino acid enantiomers (1S,2R) were obtained with modest to excellent enantiomeric excess (ee) values (ees > 62% and eep > 96%) and in good chemical yields (>25%) in one or two steps. The enantiomers were easily separated by organic solvent/H2O extraction.  相似文献   

6.
A concept of piezo-responsive hydrogen-bonded π-π-stacked organic frameworks made from Knoevenagel-condensed vanillin–barbiturate conjugates was proposed. Replacement of the substituent at the ether oxygen atom of the vanillin moiety from methyl (compound 3a) to ethyl (compound 3b) changed the appearance of the products from rigid rods to porous structures according to optical microscopy and scanning electron microscopy (SEM), and led to a decrease in the degree of crystallinity of corresponding powders according to X-ray diffractometry (XRD). Quantum chemical calculations of possible dimer models of vanillin–barbiturate conjugates using density functional theory (DFT) revealed that π-π stacking between aryl rings of the vanillin moiety stabilized the dimer to a greater extent than hydrogen bonding between carbonyl oxygen atoms and amide hydrogen atoms. According to piezoresponse force microscopy (PFM), there was a notable decrease in the vertical piezo-coefficient upon transition from rigid rods of compound 3a to irregular-shaped aggregates of compound 3b (average values of d33 coefficient corresponded to 2.74 ± 0.54 pm/V and 0.57 ± 0.11 pm/V), which is comparable to that of lithium niobate (d33 coefficient was 7 pm/V).  相似文献   

7.
To design and exploit novel macrocyclic synthetic receptors is a permanent and challenging topic in supramolecular chemistry. Here we describe the one-pot synthesis, unique geometries and intriguing host–guest properties of a new class of supramolecular macrocycles – biphen[n]arenes (n = 3, 4), which are made up of 4,4′-biphenol or 4,4′-biphenol ether units linked by methylene bridges at the 3- and 3′- positions. The biphenarene macrocycles are conveniently accessible/modifiable and extremely guest-friendly. Particularly, biphen[4]arene is capable of forming inclusion complexes with not only organic cationic guests but also neutral π-electron deficient molecules. Compared with calixarenes, resorcinarenes, cyclotriveratrylenes and pillararenes with substituted mono-benzene units, the biphen[n]arenes reported here possess significantly different characteristics in both their topologic structures and their recognition properties, and thus can find broad applications in supramolecular chemistry and other areas.  相似文献   

8.
Using the classical Ugi four-component reaction to fuse an amine, ketone, carboxylic acid, and isocyanide, here we prepared a short library of N-alkylated α,α-dialkylglycine derivatives. Due to the polyfunctionality of the dipeptidic scaffold, this highly steric hindered system shows an interesting acidolytic cleavage of the C-terminal amide. In this regard, we studied the structure-acid lability relationship of the C-terminal amide bond (cyclohexylamide) of N-alkylated α,α-dialkylglycine amides 1a–n in acidic media and, afterward, it was established that the most important structural features related to its cleavage. Then, it was demonstrated that electron-donating effects in the aromatic amines, flexible acyl chains (Gly) at the N-terminal and the introduction of cyclic compounds into dipeptide scaffolds, increased the rate of acidolysis. All these effects are related to the ease with which the oxazolonium ion intermediate forms and they promote the proximity of the central carbonyl group to the C-terminal amide, resulting in C-terminal amide cleavage. Consequently, these findings could be applied for the design of new protecting groups, handles for solid-phase synthesis, and linkers for conjugation, due to its easily modulable and the fact that it allows to fine tune its acid-lability.  相似文献   

9.
The thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oil and the stability effect of microencapsulation of leaf essential oil with β-cyclodextrin were studied. After thermal degradation of linalool-chemotype leaf essential oil, degraded compounds including β-myrcene, cis-ocimene and trans-ocimene, were formed through the dehydroxylation of linalool; and ene cyclization also occurs to linalool and its dehydroxylated products to form the compounds such as limonene, terpinolene and α-terpinene. The optimal microencapsulation conditions of leaf essential oil microcapsules were at a leaf essential oil to the β-cyclodextrin ratio of 15:85 and with a solvent ratio (ethanol to water) of 1:5. The maximum yield of leaf essential oil microencapsulated with β-cyclodextrin was 96.5%. According to results from the accelerated dry-heat aging test, β-cyclodextrin was fairly stable at 105 °C, and microencapsulation with β-cyclodextrin can efficiently slow down the emission of linalool-chemotype C. osmophloeum leaf essential oil.  相似文献   

10.
A hydrogen-bonded (H-bonded) amide macrocycle was found to serve as an effective component in the host–guest assembly for a supramolecular chirality transfer process. Circular dichroism (CD) spectroscopy studies showed that the near-planar macrocycle could produce a CD response when combined with three of the twelve L-α-amino acid esters (all cryptochiral molecules) tested as possible guests. The host–guest complexation between the macrocycle and cationic guests was explored using NMR, revealing the presence of a strong affinity involving the multi-point recognition of guests. This was further corroborated by density functional theory (DFT) calculations. The present work proposes a new strategy for amplifying the CD signals of cryptochiral molecules by means of H-bonded macrocycle-based host–guest association, and is expected to be useful in designing supramolecular chiroptical sensing materials.  相似文献   

11.
Iron-catalyzed highly regio- and enantioselective organic transformations with generality and broad substrate scope have profound applications in modern synthetic chemistry; an example is herein described based on cis-FeII complexes having metal- and ligand-centered chirality. The cis-β FeII(N4) complex [FeII(L)(OTf)2] (L = N,N′-bis(2,3-dihydro-1H-cyclopenta-[b]quinoline-5-yl)-N,N′-dimethylcyclohexane-1,2-diamine) is an effective chiral catalyst for highly regio- and enantioselective alkylation of N-heteroaromatics with α,β-unsaturated 2-acyl imidazoles, including asymmetric N1, C2, C3 alkylations of a broad range of indoles (34 examples) and alkylation of pyrroles and anilines (14 examples), all with high product yields (up to 98%), high enantioselectivity (up to >99% ee) and high regioselectivity. DFT calculations revealed that the “chiral-at-metal” cis-β configuration of the iron complex and a secondary π–π interaction are responsible for the high enantioselectivity.

A cis-β FeII complex having metal- and ligand-centered chirality catalyzes highly regio- and enantioselective alkylation of indoles (at the N1, C2, or C3 position), pyrroles and anilines with α,β-unsaturated 2-acyl imidazoles (48 examples, up to 99% ee).  相似文献   

12.
To search for new suitable Pd precursors for MOCVD/ALD processes, the extended series of fluorinated palladium complexes [Pd(CH3CXCHCO(R))2] with β-diketone [tfa−1,1,1-trifluoro-2,4-pentanedionato (1); pfpa−5,5,6,6,6-pentafluoro-2,4-hexanedionato (3); hfba−5,5,6,6,7,7,7-heptafluoro-2,4-heptanedionato (5)] and β-iminoketone [i-tfa−1,1,1-trifluoro-2-imino-4-pentanonato (2); i-pfpa−5,5,6,6,6-pentafluoro-2-imino-4-hexanonato (4); i-hfba-5,5,6,6,7,7,7-heptafluoro-2-imino-4-heptanonato (6)] ligands were synthesized with 70–80% yields and characterized by a set of experimental (SXRD, XRD, IR, NMR spectroscopy, TG) and theoretical (DFT, Hirshfeld surface analysis) methods. Solutions of Pd β-diketonates contained both cis and trans isomers, while only trans isomers were detected in the solutions of Pd β-iminoketonates. The molecules 2–6 and new polymorphs of complexes 3 and 5 were arranged preferentially in stacks, and the distance between molecules in the stack generally increased with elongation of the fluorine chain in ligands. The H…F contacts were the main ones involved in the formation of packages of molecules 1–2, and C…F, F…F, NH…F contacts appeared in the structures of complexes 4–6. The stability of complexes and their polymorphs in the crystal phases were estimated from DFT calculations. The TG data showed that the volatility differences between Pd β-iminoketonates and Pd β-diketonates were minimized with the elongation of the fluorine chain in the ligands.  相似文献   

13.
Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the transcis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t-Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state transcis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t-Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha''s rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels.

Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex.  相似文献   

14.
α-glucosidase is a major enzyme that is involved in starch digestion and type 2 diabetes mellitus. In this study, the inhibition of hypericin by α-glucosidase and its mechanism were firstly investigated using enzyme kinetics analysis, real-time interaction analysis between hypericin and α-glucosidase by surface plasmon resonance (SPR), and molecular docking simulation. The results showed that hypericin was a high potential reversible and competitive α-glucosidase inhibitor, with a maximum half inhibitory concentration (IC50) of 4.66 ± 0.27 mg/L. The binding affinities of hypericin with α-glucosidase were assessed using an SPR detection system, which indicated that these were strong and fast, with balances dissociation constant (KD) values of 6.56 × 10−5 M and exhibited a slow dissociation reaction. Analysis by molecular docking further revealed that hydrophobic forces are generated by interactions between hypericin and amino acid residues Arg-315 and Tyr-316. In addition, hydrogen bonding occurred between hypericin and α-glucosidase amino acid residues Lys-156, Ser-157, Gly-160, Ser-240, His-280, Asp-242, and Asp-307. The structure and micro-environment of α-glucosidase enzymes were altered, which led to a decrease in α-glucosidase activity. This research identified that hypericin, an anthracene ketone compound, could be a novel α-glucosidase inhibitor and further applied to the development of potential anti-diabetic drugs.  相似文献   

15.
An efficient, mild, and green method was developed for the synthesis of indeno[1,2-b]quinoxaline derivatives via o-phenylenediamine (OPD) and 2-indanone derivatives utilizing β-cyclodextrin (β-CD) as the supramolecular catalyst. The reaction can be carried out in water and in a solid state at room temperature. β-CD can also catalyze the reaction of indan-1,2-dione with OPD with a high degree of efficiency. Compared to the reported methods, this procedure is milder, simpler, and less toxic, making it an eco-friendly alternative. In addition, the β-CD can be recovered and reused without the loss of activity.  相似文献   

16.
An iridium catalyzed asymmetric hydrogenation of racemic exocyclic γ,δ-unsaturated β-ketoesters via dynamic kinetic resolution to functionalized chiral allylic alcohols was developed. With the chiral spiro iridium catalysts Ir-SpiroPAP, a series of racemic exocyclic γ,δ-unsaturated β-ketoesters bearing a five-, six-, or seven-membered ring were hydrogenated to the corresponding functionalized chiral allylic alcohols in high yields with good to excellent enantioselectivities (87 to >99% ee) and cis-selectivities (93 : 7 to >99 : 1). The origin of the excellent stereoselectivity was also rationalized by density functional theory calculations. Furthermore, this protocol could be performed on gram scale and at a lower catalyst loading (0.002 mol%) without the loss of reactivity and enantioselectivity, and has been successfully applied in the enantioselective synthesis of chiral carbocyclic δ-amino esters and the β-galactosidase inhibitor isogalactofagomine.

An iridium catalyzed asymmetric hydrogenation of exocyclic γ,δ-unsaturated β-ketoesters via dynamic kinetic resolution was developed, providing efficient protocol for enantioselective synthesis of functionalized chiral allylic alcohols.  相似文献   

17.
β-Lactam derivatives are produced through intermediate donor–acceptor cyclopropene intermediates in high yield, exclusive cis-diastereoselectivity, and high enantiocontrol in a chiral dirhodium carboxylate catalyzed intramolecular C–H functionalization reaction of enoldiazoacetamides.  相似文献   

18.
In the presence of bidentate 1,n-bis-diphenylphosphinoalkane-CoCl2 complexes {Cl2Co[P ∼ P]} and Me3Al or methylaluminoxane, acyclic (E)-1,3-dienes react with ethylene (1 atmosphere) to give excellent yields of hydrovinylation products. The regioselectivity (1,4- or 1,2-addition) and the alkene configuration (E- or Z-) of the resulting product depend on the nature of the ligand and temperature at which the reaction is carried out. Cobalt(ii)-complexes of 1,1-diphenylphosphinomethane and similar ligands with narrow bite angles give mostly 1,2-addition, retaining the E-geometry of the original diene. Complexes of most other ligands at low temperature (–40 °C) give almost exclusively a single branched product, (Z)-3-alkylhexa-1,4-diene, which arises from a 1,4-hydrovinylation reaction. A minor product is the linear adduct, a 6-alkyl-hexa-1,4-diene, also arising from a 1,4-addition of ethylene. As the temperature is increased, a higher proportion of the major branched-1,4-adduct appears as the (E)-isomer. The unexpectedly high selectivity seen in the Co-catalysed reaction as compared to the corresponding Ni-catalysed reaction can be rationalized by invoking the intermediacy of an η4-[(diene)[P ∼ P]CoH]+-complex and its subsequent reactions. The enhanced reactivity of terminal E-1,3-dienes over the corresponding Z-dienes can also be explained on the basis of the ease of formation of this η4-complex in the former case. The lack of reactivity of the X2Co(dppb) (X = Cl, Br) complexes in the presence of Zn/ZnI2 makes the Me3Al-mediated reaction different from the previously reported hydroalkenylation of dienes. Electron-rich phospholanes, bis-oxazolines and N-heterocyclic carbenes appear to be poor ligands for the Co(ii)-catalysed hydrovinylation of 1,3-dienes. An extensive survey of chiral ligands reveals that complexes of DIOP, BDPP and Josiphos ligands are quite effective for these reactions even at –45 °C and enantioselectivities in the range of 90–99% ee can be realized for a variety of 1,3-dienes. Cobalt(ii)-complex of an electron-deficient Josiphos ligand is especially active, requiring only <1 mol% catalyst to effect the reactions.  相似文献   

19.
This study aimed to investigate the chemical composition of the leaf essential oil from Ivoirian Isolona dewevrei. A combination of chromatographic and spectroscopic techniques (GC(RI), GC-MS and 13C-NMR) was used to analyze two oil samples (S1 and S2). Detailed analysis by repetitive column chromatography (CC) of essential oil sample S2 was performed, leading to the isolation of four compounds. Their structures were elucidated by QTOF-MS, 1D and 2D-NMR as (10βH)-1β,8β-oxido-cadin-4-ene (38), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (cis-germacrene D-8-ol) (52), 4-methylene-(7αH)-germacra-1(10),5-dien-8α-ol (trans-germacrene D-8-ol) (53) and cadina-1(10),4-dien-8β-ol (56). Compounds 38, 52 and 53 are new, whereas NMR data of 56 are reported for the first time. Lastly, 57 constituents accounting for 95.5% (S1) and 97.1% (S2) of the whole compositions were identified. Samples S1 and S2 were dominated by germacrene D (23.6 and 20.5%, respectively), followed by germacrene D-8-one (8.9 and 8.7%), (10βH)-1β,8β-oxido-cadin-4-ene (7.3 and 8.7), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (7.8 and 7.4%) and cadina-1(10),4-dien-8β-ol (7.6 and 7.2%). Leaves from I. dewevrei produced sesquiterpene-rich essential oil with an original chemical composition, involving various compounds reported for the first time among the main components. Integrated analysis by GC(RI), GC-MS and 13C-NMR appeared fruitful for the knowledge of such a complex essential oil.  相似文献   

20.
Multiple supramolecular functionalities of cyclic α-alkoxy tellurium-trihalides (including Te---O, Te---X (X = Br, I) and Te---π(C=C) supramolecular synthons) afford rich crystal packing possibilities, which consequently results in polymorphism or Z’ > 1 crystal structures. Example of three crystal forms of cyclohexyl-ethoxy-tellurium-trihalides, one of which combines the packing of two others, affords a unique model to observe the supramolecular synthon evolution at the early stages of crystallization, when crystals on the way find themself at a carrefour between the evolutionally close routes, but fail to choose between two energetically close packing patterns, so taking the “middle path”, which incorporates both of them (and results in two crystallographically independent molecules). In general, this allows a better understanding of the existing structures, and an instrument to search for the new polymorphic forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号