首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work is focused on the comparative analysis of electrochemical and transport properties in the major families of cathode and anode compositions for intermediate-temperature solid oxide fuel cells (SOFCs) and materials science-related factors affecting electrode performance. The first part presents a brief overview of the electrochemical and chemical reactions in SOFCs, specific rate-determining steps of the electrode processes, solid oxide electrolyte ceramics, and effects of partial oxygen ionic and electronic conductivities in the SOFC components. The aspects associated with materials compatibility, thermal expansion, stability, and electrocatalytic behavior are also briefly discussed. Primary attention is centered on the experimental data and approaches reported during the last 10–15 years, reflecting the main challenges in the field of materials development for the ceramic fuel cells.  相似文献   

2.
3.
In solid oxide fuel cells (SOFCs) the interconnects electrically link air and fuel electrodes on either side to produce a practical electrical power output. The long-term stability of intermediate temperature (650–800 °C) SOFC operation strongly depends on the composition of the ferritic steel interconnection material and the steel/ceramic interface. During high-temperature operation the Cr-containing ferritic steel forms an oxide scale at its surface, thereby causing high ohmic electrical contact resistance when connected to the surface of an electronically conducting ceramic cathode material. In the long run, the vaporization of Cr species from these oxide scales also affects the cathode activity, eventually leading to cell deterioration. One way of overcoming the problem is to incorporate another electronically conducting ceramic compliant layer, commonly known as the contact layer, between the cathode and metallic interconnect. In this contribution, LaNi0.6Fe0.4O3 was tested as a cathode contact material. Its performance at 800 °C in the form of a ~50 μm thick film applied on two ferritic steel compositions was examined. After 600 h of testing, contact resistances of 60 and 160 mΩ cm2 were obtained. The different values are explained by the variation in steel composition.  相似文献   

4.
Using the citrate sol-gel method, a new complex oxide Ca0.75Y0.25Co0.15Mn0.85O2.92 is synthesized. It is shown that this compound is crystallized in the rhombically distorted version of perovskite structure (a = 0.53397(8), b = 0.7470(1), c = 0.52810(6) nm). The phase is characterized by a low coefficient of thermal expansion (CTE) (13.8 ppm K?1) and high electric conductivity (135 S/cm at 900°C). The chemical reaction between Ca0.75Y0.25Co0.15Mn0.85O2.92 and the YSZ and GDC electrolyte materials is studied. The material is highly reactive and reacts with YSZ and GDC at 900°C and 1070°C, respectively. It is concluded that Ca0.75Y0.25Co0.15Mn0.85O2.92 is a promising cathodic material for solid oxide fuel cells, provided a reliable protection SDC sublayer is formed between the cathode and the YSZ membrane.  相似文献   

5.
A three-dimensional (3D) fibrous cathode of solid oxide fuel cell was fabricated by using eggshell membranes (ESMs) as the template. This cathode possesses high porosity and interconnectivity, and low polarization resistance. A single fuel cell with the 3D fibrous Sm0.5Sr0.5CoO3/Ce0.8Sm0.2O1.9 cathode shows significantly improved performances at low operating temperatures (500–600 °C) as compared with the cell prepared with the ESM-templated cluster cathode in our previous study.  相似文献   

6.
On the history of solid electrolyte fuel cells   总被引:1,自引:0,他引:1  
The path to the discovery of galvanic solid electrolyte gas cells (J.-M. Gaugain 1853) and to the first industrially produced solid electrolyte gas cells (Nernst lamps 1897) is described. The development of the fundamentals of solid electrolyte fuel cells started with the work of Haber 1905, Schottky 1935, Baur 1937 and Wagner 1943. Extensive work in the field of solid oxide fuel cells (SOFCs) was done in the fifties by Peters and Möbius. After 1960, a rapidly growing number of scientists worked on the different problems of SOFCs, and by 1970 the basis was established on which the broad technologically orientated development of SOFCs proceeds today.  相似文献   

7.
Silver (Ag) at 0.1–2.0 wt% was incorporated into cathodes for solid oxide fuel cells as a catalyst for oxygen reduction. A novel processing route for Ag incorporation ensuring a very homogeneous Ag ion distribution is presented. From the results of X-ray powder diffraction it can be concluded that the La0.65Sr0.3MnO3– perovskite phase is already formed at 900 °C. The solubility of Ag in the crystal lattice in this type of perovskite was below 1 wt%. The electrochemical tests of these materials show that there is only a slight catalytic effect of Ag. Scanning electron microscopy reveals a low mechanical contact of the cathode grains to the electrolyte due to the low cathode sintering temperature that was chosen.  相似文献   

8.
One of the major challenges to develop intermediate temperature solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) chemical compatibility with the electrolyte; (3) a matched thermal expansion coefficient (TEC); (4) stability in a wide range of oxygen partial pressure; and (5) high catalytic activity for the oxygen reduction reaction (ORR). In this short review, a survey of these requirements for K2NiF4-type material wi...  相似文献   

9.
Electrochemical reduction of oxygen at the interface between a La0.9Sr0.1MnO3 (LSM)-based electrode and an electrolyte, either yttria-stabilized-zirconia (YSZ) or La0.8Sr0.2Ga0.9Mg0.1O3 (LSGM), has been investigated using DC polarization, impedance spectroscopy, and potential step methods at temperatures from 1053 to 1173 K. Results show that the mechanism of oxygen reduction at an LSM/electrolyte interface changes with the type of electrolyte. At an LSM/YSZ interface, the apparent cathodic charge transfer coefficient is about 1 at high temperatures, implying that the rate-determining step (r.d.s.) is the diffusion of partially reduced oxygen species, while at an LSM/LSGM interface the cathodic charge transfer coefficient is about 0.5, implying that the r.d.s. is the donation of electrons to atomic oxygen. The relaxation behavior of the LSM/electrolyte interfaces displays an even more dramatic dependence on the type of electrolyte. Under cathodic polarization, the current passing through an LSM/YSZ interface increases with time whereas that through an LSM/LSGM interface decreases with time, further confirming that it is the triple phase boundaries (TPBs), rather than the surface of the LSM or the LSM/gas interface, that dominate the electrode kinetics when LSM is used as an electrode. Electronic Publication  相似文献   

10.
The electrode behavior and microstructure of freshly prepared (La0.8Sr0.2)0.9MnO3 (LSM) electrodes were investigated under various polarization conditions. The original, large agglomerates in freshly prepared LSM electrodes were broken down into sphere-shaped grains when exposed to cathodic or anodic current passage of 200 mA cm–2 at 800 °C in air for 3 h. Microstructural changes under cathodic polarization could be related to the pronounced diffusion and migration of oxygen vacancies and Mn ions on the LSM surface and lattice expansion, while lattice shrinkage under oxidation conditions most likely contributes to the structural changes under anodic polarization. Such morphological changes were irreversible and were found to be beneficial to the performance of freshly prepared LSM electrodes. Freshly prepared LSM electrodes behaved very differently with respect to the cathodic and anodic current passage treatment.  相似文献   

11.
For the determination of trace impurities in ceramic components of solid oxide fuel cells (SOFCs), some mass spectrometric methods have been applied such as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Due to a lack of suitable standard reference materials for quantifying of analytical results on La x Sr y MnO3 cathode material a matrix-matched synthetic standard-high purity initial compounds doped with trace elements-was prepared in order to determine the relative sensitivity coefficients in SSMS and LA-ICP-MS. Radiofrequency glow discharge mass spectrometry (rf-GDMS) was developed for trace analysis and depth profiling of thick non-conducting layers. Surface analytical techniques, such as secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS), were used to determine the element distribution on surfaces (homogeneity) and the surface contaminants of SOFC ceramic layers.Dedicated to Professor Dr. rer. nat. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

12.
《中国化学快报》2021,32(11):3548-3552
Solid oxide fuel cells (SOFCs) can directly convert renewable biogas into electricity with high efficiency at high temperature, however the long-term stability of SOFCs is significantly affected by the carbon deposition on the anode during cell operation. Herein, we report a novel carbon removal approach by high temperature infrared light driven photocatalytic oxidation. Upon the comparison of electrochemical performance of Ni-YSZ anode and TiO2 modified Ni-YSZ anode in the state-of-the-art single cell (Ni-YSZ/YSZ/LSCM), the modified anodes exhibit markedly improved peak powder density with simulated biogas fuel (70% CH4+ 30% CO2) at 850 °C with less coking after 40 h operation. The high activity and carbon deposition resistance of the modified anode is possibly attributed to the in situ generated hydroxyl radical from the reduced TiOx powder under high temperature infrared light excitation, which is supported by detailed analysis of microstructural information of anodes and the powder-based thermo-photocatalytic experiments.  相似文献   

13.
A Ru-free anode was developed for the direct utilization of iso-octane in low temperature solid oxide fuel cells (SOFCs). The anode was consisted of a Ni framework and a nano-sized oxygen–ion conductor, samaria-doped ceria (SDC), which was coated onto the inner surface of the framework via an ion impregnation process. Compared with the cells based on conventional Ni–SDC anodes, single cells with the SDC-coated Ni anodes exhibited improved stability and enhanced electrochemical activity. Peak power density of 400 mW cm−2 was achieved at 600 °C, and power generation was relatively stable over 260 h when iso-octane–air mixture was directly used as the fuel. The performance is comparable with those obtained using ceria-Ru as an internal reforming catalyst.  相似文献   

14.
Mixed ionic-electronic conductors in the family of LaxSr1–xCoyFe1–yO3–δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we report our findings on the effect of a thin film coating of La0.85Sr0.15MnO3–δ (LSM) on the performance of a porous La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) cathode. When the thicknesses of the LSM coatings are appropriate, an LSM-coated LSCF electrode showed better stability and lower polarization (or higher activity) than the blank LSCF cathode without LSM infiltration. An anode-supported cell with an LSM-infiltrated LSCF cathode demonstrated at 825 °C a peak power density of ~1.07 W/cm2, about 24% higher than that of the same cell without LSM infiltration (~0.86 W/cm2). Further, the LSM coating enhanced the stability of the electrode; there was little degradation in performance for the cell with an LSM-infiltrated LSCF cathode during 100 h operation.  相似文献   

15.
X-ray absorption spectroscopy (XAS) is one of the best techniques to obtain the information on the electronic and local structures of materials. In the last few decades, XAS becomes a common analytical technique for the investigation of solid oxide fuel cells and proton-conducting ceramic fuel cells. In particular, operando and/or advanced XAS measurements can be recently available with the increased accessibility of synchrotron radiation. In this article, recent trends of solid oxide fuel cell and proton-conducting ceramic fuel cell researches using XAS are overviewed.  相似文献   

16.
Following previous surveys of the solid electrolyte ceramics and electrode reaction mechanisms in solid oxide fuel cells, this review is focused on the comparative analysis of electrochemical performance, thermal expansion, oxygen ionic and electronic transport, and durability-determining factors in the major groups of electrode materials. The properties of mixed-conducting oxide phases with perovskite-related and fluorite structures, ceramic–metal and oxide composites, and catalytically active additives are briefly discussed, with emphasis on the approaches and findings reported during the last 10–15 years. The performance of conventional and alternative electrode materials in the cells with ZrO2-, CeO2-, LaGaO3-, and La10Si6O27-based electrolytes is appraised in the context of potential optimization strategies. Particular attention is centered on the cathode and anode compositions providing maximum electrochemical activity and stability and on the critical aspects relevant for electrode microstructure engineering.  相似文献   

17.
采用溅射或溅射与退火相结合的方法制备了一系列氧化钆掺杂的氧化铈(GDC)隔层,并考察了其对固体氧化燃料电池性能的影响. 结果表明,200 ℃下溅射获得了立方结构氧化钆掺杂的氧化铈均匀薄膜,在900-1100 ℃范围内的退火处理使得GDC薄膜致密,从而有效阻止了氧化钇掺杂的氧化锆电解质与阴极材料之间的反应,大幅度提高了电池的电化学性能.  相似文献   

18.
The method of electrostatic spray pyrolysis was designed to apply protective coatings based on Mn-Co spinel to ferrite stainless steels (Crofer22APU and 08Kh18T1). The comparative thermogravimetric (TG) studies of ferrite stainless steels with and without protective coatings were carried out. The electrochemical characteristics of protective coatings exposed to long current loading were studied. The formation processes of Cr2O3 oxide films were studied at the contact of ferrite stainless steel with La0.8Sr0.2MnO3 ionic and electronic conductor. The coatings of Mn-Co spinel were shown not preventing formation of continuous oxide film on the stainless steel surface.  相似文献   

19.
Electrochemical lithium insertion has been studied in a large number of vanadium oxides with three dimensional framework structure. Several of these oxides have shown high capacities for lithium insertion and good reversibility.Pure solutions of decavanadic acid have shown to undergo spontaneous polycondensation reaction forming sols or gels of highly polymerized vanadium oxides, M w 106. After dehydration a series of xerogels with varying amounts of water, V2O5 · nH2O, can be obtained. The structure of these xerogels consists of ribbons of corner and edge sharing VO6 octahedra stabilized by interlayer water molecules. Under ambient conditions the water content corresponds to n=1.8, but this value can be reversibly changed under mild drying conditions.This report deals with the electrochemical insertion of lithium in dried vanadium oxide xerogels, with special regard to the use of these materials as electrodes in rechargeable lithium batteries.  相似文献   

20.
The search for alternative anode materials for solid oxide fuel cells (SOFCs) has been reviewed in the light of structure, stability, conductivity, chemical and thermal compatibility with electrolyte YSZ. In this review, we have presented the advantages and disadvantages of the traditional Ni-YSZ anode for SOFCs. The development of alternative anode for SOFCs with fluorite, rutile, tungsten bronze, pyrochlore, perovskite and spinel structures has been reviewed and discussed in detail. Among the reported materials systems, materials with perovskite structure are promising particularly where two ions with complimentary function are present on the B-site at high concentration. We have recently found a good redox stable anode (La(0.75)Sr(0.25))(1-x)Cr(0.5)Mn(0.5)O(3) (0 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号