首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Summary One of the largest available data sets for developing a quantitative structure-activity relationship (QSAR) — the inhibition of dihydrofolate reductase (DHFR) by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazine derivatives — has been used for a sixfold cross-validation trial of neural networks, inductive logic programming (ILP) and linear regression. No statistically significant difference was found between the predictive capabilities of the methods. However, the representation of molecules by attributes, which is integral to the ILP approach, provides understandable rules about drug-receptor interactions.  相似文献   

2.
5-Propyl-5-deaza and 5-butyl-5-deaza analogues of classical antifolates were synthesized by extensions of a previously reported general route which proceeds through 2,4-diamino-5-alkylpyrido[2,3-d]pyrimidine-6-carbonitrile intermediates followed by reductive condensation with diethyl N-4-(aminobenzoyl)-L-glutarnate to give diethyl esters of 5-alkyl-5-deazaaminopterin types. N10-Methyl derivatives, i.e., derivatives of 5-alkyl-5-deazamethotrexate, were also prepared by reductive methylation of the N10-H compounds. 5-Ethyl-5-deazamethotrexate was prepared using an alternative route through 6-(bromomethyl)-2,4-diamino-5-ethylpyrido[2,3-d]pyrimidine. These antifolates were evaluated for inhibition of dihydrofolate reductase (DHFR) from L1210 cells, their effect on L1210 and S180 tumor cell growth in culture, and carrier-mediated transport through L1210 cell membranes. Inhibitory effect on DHFR was lowered relative to methotrexate in 5-propyl-5-deazaaminopterin and 5-propyl-5-deazamethotrexate by 2- to 3-fold (Ki = 9.3 and 11.7 pM, respectively, vs. 4.3 pM for methotrexate) and by 17- to 18-fold in 5-butyl-5-deaza-aminopterin and 5-butyl-5-deazamethotrexate (Ki = 74 and 78 pM, respectively). Molecular modeling using graphics derived from human DHFR show the propyl and butyl compounds interacting with the enzyme in conformations that account for these slight decreases in binding.  相似文献   

3.
The synthesis and biological evaluation of N-[4-(2-trans-[([2,6-diamino-4(3H)-oxopyrimidin-5-yl]methyl)thio]cyclobutyl)benzoyl]-L-glutamic acid (1) is reported. Compound 1 is a potent dihydrofolate reductase (DHFR) inhibitor (Kj = 12 nM) with excellent in vitro cell culture growth inhibition (L1210, IC50 = 29 nM). Protection experiments showed that the cell growth inhibitory activity was due to DHFR inhibition. The key step in the synthesis was the coupling of a cyclobutylmethylthiol with the 5-bromo-2,6-diamino-4-oxopyrimidine 8.  相似文献   

4.
5.
Five previously undescribed trimetrexate analogues with bulky 2′-bromo substitution on the phenyl ring were synthesized in order to assess the effect of this structure modification on dihydrofolate reductase inhibition. Condensation of 2-[2-(2-bromo-3,4,5-trimethoxyphenyl)ethyl]-1,l-dicyanopropene with sulfur in the presence of N,N-diethylamine afforded 2-amino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methyl-thiophene-3-carbonitrile ( 15 ) and 2-amino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethyl]thiophene-3-car-bonitrile ( 16 ). Further reaction with chloroformamidine hydrochloride converted 15 and 16 into 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methylthieno[2,3-d]pyrimidine ( 8a ) and 2,4-diamino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethylthieno[2,3-d]pyrimidine ( 12 ) respectively. Other analogues, obtained by reductive coupling of the appropriate 2,4-diaminoquinazoline-6(or 5)-carbonitriles with 2-bromo-3,4,5-trimethoxyaniline, were 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)-5-chloro-quinazoline ( 9a ), 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 10 ), and 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 11 ). Enzyme inhibition assays revealed that space-filling 2′-bromo substitution in this limited series of dicyclic 2,4-diaminopyrimidines with a 3′,4′,5′-trimethoxyphenyl side chain and a CH2, CH2CH2, or CH2NH bridge failed to improve species selectivity against either P. carinii or T. gondii dihydrofolate reductase relative to rat liver dihydrofolate reductase.  相似文献   

6.
Based on a computer-assisted analysis of the three-dimensional structure of the binary complex of E.coli dihydrofolate reductase (DHFR) with methotrexate, 5-(N-arylnortropan-3-yl)- and 5-(N-arylpiperidin-4-yl)-2,4-diaminopyrimidines 2 and 4 were designed as inhibitors of DHFR. Syntheses of the designed compounds have been carried out. The most potent compound 2a inhibited E. coli DHFR with Ki = 0.49.10?9M. The activities within the series of compounds synthesized could be rationalized by molecular-modelling experiments which served as the basis of this work. Several compounds within the presented series exhibit antimalarial activities in vitro and in vivo.  相似文献   

7.
2,4-Diamino-5,7-dihydro-6H-thiopyrano[4′,3′:4,5]thieno[2,3-d]pyrirnidine, 2,4-diamino-9H-mdeno[1′,2′:4,5]thieno[2,3-d]pyrimidine, 2,4-diamino-5H-indeno[2′,1′:4,5]thieno[2,3-d]pyrimidine, 9,11-diamino-5,6-dihydronaphtho[1′,2′:4,5]thieno[2,3-d]pyrimidine, 7,9-diamino-5,6-dihydronaphtho[2′,1′:4,5]thieno[2,3-d]pyrimidine, 2,4-diamino-7-benzy]-5,6,7,8-tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine, and various 2,4-diamino-5,6,7,8-tetrahydro-[1]benzothieno[2,3-d]pyrimidines were synthesized by cyclization of the requisite fused 2-aminothio-phenene-3-carbonitriles utilizing chloroformamidine hydrochloride in diglyme. Several compounds exhibited strong inhibitory effects against Streptococcus faecalis (MGH-2), Staphylococcus aureus (UC-76), Streptococcus faecium (ATCC 8043), Lactobacillus casei (ATCC 7469), and Pediococcus cerevisiae (ATCC 8081) in vitro, and three compounds displayed antimalarial activity against Plasmodium berghei in mice and P. falciparum (Uganda I) in vitro.  相似文献   

8.
9.
10.
11.
Different calibration methods have been applied for the determination of the Hydroxyl Number in polyester resins, namely Partial Least Squares (PLS), Principal Component Regression (PCR), Ordinary Least Squares with selection of the variables by genetic algorithm (OLS-GEN) and back-propagation Artificial Neural Networks (BP-ANN). The predictive ability of the regression models was estimated by splitting the dataset in training and test sets by application of the Kohonen self-organising maps. The linear methods (OLS-GEN, PLS and PCR) showed comparable results while artificial neural networks provided the best results both in fitting and prediction.  相似文献   

12.
Cyclocondensation of 2,4,6-triaminopyrimidine ( 10 ) with chlorovinyl aldehyde 7 afforded the linear regioisomer 9,1 1-diamino-5,6-dihydrobenzo[f]pyrimido[4,5-c]quinoline ( 1 ) while the cyclocondensation of 2,6-diamino-4-hydroxypyrimidine ( 11 ) or 6-amino-2,4-dihydroxypyrimidine ( 12 ) with chlorovinyl aldehyde 7 was regiospecific affording the linear regioisomers 9-amino-11-oxo-5,6-dihydrobenzo[f]pyrimido[4,5-c]quinoline ( 2 ) and 9,11-dioxo-5,6-dihydrobenzo[f]pyrimido[4,5-c]quinoline ( 3 ) respectively. The linear structures of these compounds were established by 1H nmr and 13C nmr spectral data.  相似文献   

13.
The reaction of 5-chloro-2-nitrobenzonitrile with a variety of mercaptoheterocycles provided the corresponding 2-nitro-5-[(heterocyclic)thio]benzonitriles. Reduction to the amine followed by cyclization with chloroformamidine hydrochloride afforded a series of 2,4-diamino-6-[(hetero-cyclic)thio]quinazolines. Bromination, oxidation, and amidine formation were accomplished with 2,4-diamino-6-[(4-phenyl-2-thiazolyl)thio]quinazoline (23) to provide additional analogs. Several of these compounds exhibited suppressive antimalarial activity against drug-sensitive lines of Plasmodium berghei in mice.  相似文献   

14.
A series of 5-(arylthio)-2,4-diaminoquinazolines are known as selective inhibitors of dihydrofolate reductase (DHFR) from Candida albicans. We have performed docking and molecular dynamics simulations of these inhibitors with C. albicans and human DHFR to understand the basis for selectivity of these agents. Study was performed on a selected set of 10 compounds with variation in structure and activity. Molecular dynamics simulations were performed at 300 K for 45 ps with equilibration for 10 ps. Trajectory data was analyzed on the basis of hydrogen bond interactions, energy of binding and conformational energy difference. The results indicate that hydrogen bonds formed between the compound and the active site residues are responsible for inhibition and higher potency. The selectivity index, i.e the ratio of I50 against human DHFR to I50 against fungal DHFR, is mainly determined by the conformation adapted by the compounds within the active site of two enzymes. Since the human DHFR active site is rigid, the compound is trapped in a higher energy conformation. This energy difference between the two conformations E mainly governs the selectivity against fungal DHFR. The information generated from this analysis of potency and selectivity should be useful for further work in the area of antifungal research.  相似文献   

15.
Treatment of 1,3-diaminoguanidine monohydrochloride ( 1 ) with 2,4-pentanedione ( 2 ) in alcohols under carefully controlled conditions gave 3,6-diamino-1,2-dihydro-1,2,4,5-tetrazine monohydrochloride ( 3 ) in 45-50% yields along with 3,5-dimethyl-1H-pyrazole ( 4 ) and its hydrochloride 5 . Oxidation of 3 with sodium perborate produced 3,6-diamino-1,2,4,5-tetrazine ( 6 ) in quantitative yield.  相似文献   

16.
The peroxyacid oxidation of 6-chloro-2,4-diaminopyrimidine ( 1 ) led to two products, 6-chloro-2,4-diaminopyrimidine 3-N-oxide ( 2 ) and 2,4-diamino-5,6-dichloropyrimidine 3-N-oxide ( 3 ). The assignment of structure of both of these compounds was made on the basis of ir, uv, nmr, and mass spectral data. A discussion of the pathways involved in the formation of 3 is presented.  相似文献   

17.
The glutamic acid moiety of N-[4-[3-(2,4-diamino-7H-pyrrolo[2,3-d]pyrimidin-5-yl)propyl]benzoyl]-L-g lutamic acid (1b, TNP-351) and the related compound (1a), was replaced with various N(omega)-acyl-, sulfonyl-, carbamoyl- and aryl-2,omega-diaminoalkanoic acids, and the inhibitory effects of the resulting products (9, 11, 14, 18, 21, 23, 25, 30, 36) on dihydrofolate reductase (DHFR), the growth of murine fibrosarcoma Meth A cells, and methotrexate-resistant human CCRF-CEM cells, were examined. Compounds (9a-f) acylated with a hemiphthaloyl group were efficiently synthesized by coupling pyrrolo[2,3-d]pyrimidine carboxylic acids (7a,b) and N(omega)-phthaloyl 2,omega-diaminoalkanoic acid methyl esters (6a-c) and subsequent hydrolysis. The other N(omega)-acyl- and sulfonyl-ornithine analogs (21, 23, 25) were synthesized by acylation of free amino intermediates (19a,b) derived from tert-butoxycarbonyl-ornithine analogs (17a,b). A free ornithine analog (18) did not strongly inhibit Meth A cell growth, whereas all N(omega)-acyl-, sulfonyl-, carbamoyl- and aryl-ornithine analogs (9, 11, 21, 23, 25, 30, 36) exhibited much more potent inhibitory activities against both DHFR and Meth A cell growth. In particular, compounds 9c, 21k and 36a also showed remarkable growth-inhibitory activities against methotrexate-resistant CCRF-CEM cells. These results demonstrate that the potent inhibitory activities of N(omega)-masked ornithine analogs against the growth of Meth A cells and methotrexate-resistant CCRF-CEM cells, results from effective uptake via reduced folate carrier and their potent DHFR inhibition.  相似文献   

18.
1-[4-(tert-Butyloxycarbonyl)phenyl]-3-pyrrolidinone and 1-[3-(tert-butyloxycarbonyl)phenyl]-4-piperidinone were condensed with ethyl cyanoacetate or malononitrile to form ylidene derivatives, which were then subjected sequentially to (i) catalytic or chemical reduction, (ii) condensation with guanidine, and (iii) gentle tri-fluoroacetic acid treatment to obtain 3-(2,4-diamino-6(5H)-oxopyrimidin-5-yl)-1-(4-carboxyphenyl)pyrrolidine ( 27 ), 4-(2,4-diamino-6(5H)-oxopyrimidin-5-yl)-1-(carboxyphenyl)piperidine ( 35 ), and 3-(2,4,6-triaminopyrimidin-5-yl)-1-(carboxyphenyl)pyrrolidine ( 40 ). Condensation of 27, 35 , and 40 with diethyl or di-tert-butyl L-glutamate followed by removal of the ester groups yielded N-[4-[3-(2,4-diamino-6(5H)-oxopyrimidin-5-yl)pyr-rolidino]benzoyl]-L-glutamic acid ( 13 ), N-[4-[4-(2,4-diamino-6-(5H)-oxopyrimidin-5-yl)piperidino]benzoyl]-L-glutamic acid ( 14 ), and N-[4-[3-(2,4,6-triaminopyrimidin-5-yl)pyrrolidino]benzoyl]-L-glutamic acid ( 15 ). Compounds 13 and 14 may be viewed as 5-deaza-7-desmethylene analogues of 5,10-methylene-5,6,7,8-tetrahydrofolic and 5,10-ethylene-5,6,7,8-tetrahydrofolic acid, respectively. Compounds 13 and 15 were good substrates for mouse liver folylpolyglutamate synthetase, with Km values of 20 and 18 μM and a relative first-order rate constant Vmax/Km of 2.2 (aminopterin = 1.0). In contrast, 14 was a very poor substrate, with a Km of 490 μM and a relative Vmax/Km of 0.052. As expected from its structure, 15 was a dihydrofolate reductase inhibitor. However its potency was unexceptional (IC50 = 1.2 μM). Compounds 13 and 14 were inactive at concentrations of up to 100 μM, and likewise showed no activity against thymidylate synthase or glycinamide ribotide formyltransferase, two other key enzymes of folate-mediated one-carbon metabolism. Compound 15 was moderately active as an inhibitor of the growth of cultured tumor cells (SCC25 human squamous cell carcinoma), with an IC50 of 0.37 μM (72 hour exposure). By comparison the IC50 of aminopterin was 0.0069 μM. Thus, even though 15 is a good folylpolyglutamate synthetase substrate, the deep-seated skeletal changes embodied in this structure are unfavorable for DHFR binding and may also be unfavorable for transport into cells.  相似文献   

19.
Synthesis of 2,4-Diamino-thieno[2,3-d]pyrimidines Condensation of 2-aminothiophene-3-carbonitrile ( 4 ) with guanidine or sequential addition of CS2 and NH3 to 4 provides 2,4-diaminothieno[2,3-d]pyrimidine ( 7 ). This compound yields, after sequential addition of sec-BuLi and either [3-(trifluoromethyl)benzene]sulfenyl chloride ( 8 ) or the corresponding disulfide 9 , followed by acidic work up, 2,4-diamino-6-{[3-(trifluoromethyl)phenyl]thio}thieno[2,3-d]pyrimidine ( 10 ). In another approach, 2-amino-5-{[3-(trifluoromethyl)phenyl]thio}thiophene-3-carbonitrile ( 11 ) obtained from 4 and 8 is transformed to 10 by condensation with guanidine. Corresponding to the second route, 2,4-diamino-6-[(naphth-2-yl)thio]thieno-[2,3-d]pyrimidine ( 16 ) is synthesized. Oxidation of 10 with m-chloroperbenzoic acid gives 2,4-diamino-6-{[3-(tri-fluoromethyl)phenyl]sulfinyl}thieno[2,3-d]pyrimidine ( 13 ).  相似文献   

20.
A trideaza analog of aminopterin, N-(4[2-(2,4-diamino-6-quinazolinyl)ethyl]benzoyl)-L-glutamic acid, was prepared by a Wittig condensation of 2,4-diaminoquinazoline-6-carboxaldehyde and [P-(N-[1,3-bis(ethoxycarbonyl)propan-1-yl]aminocarbonyl)phenylmethyl]triphenylphosphonium bromide followed by catalytic reduction and mild hydrolysis. This compound was found to have confirmed inhibitory activity against leukemia L1210 in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号