首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Mdm2 is a major negative regulator of the tumor suppressor p53 protein, a protein that plays a crucial role in maintaining genome integrity. Inactivation of p53 is the most prevalent defect in human cancers. Inhibitors of the Mdm2-p53 interaction that restore the functional p53 constitute potential nongenotoxic anticancer agents with a novel mode of action. We present here a 2.0 ? resolution structure of the Mdm2 protein with a bound stapled p53 peptide. Such peptides, which are conformationally and proteolytically stabilized with all-hydrocarbon staples, are an emerging class of biologics that are capable of disrupting protein-protein interactions and thus have broad therapeutic potential. The structure represents the first crystal structure of an i, i + 7 stapled peptide bound to its target and reveals that rather than acting solely as a passive conformational brace, a staple can intimately interact with the surface of a protein and augment the binding interface.  相似文献   

2.
Gankyrin is an oncoprotein containing seven ankyrin repeats that is overexpressed in hepatocellular carcinoma (HCC). Gankyrin binds to Mdm2, which results in accelerated ubiquitylation via degradation of p53, and it also plays an important role in cell proliferation. However, little is known about the relationships between p53 levels, cell proliferation, and gankyrin over-expression. In order to investigate the influence of gankyrin protein on p53 and Mdm2 in a zebrafish model, we injected human gankyrin (hgankyrin) containing expression vectors (pCS2-hgankyrin, pCS2-hgankyrin-EGFP) into zebrafish embryos. To measure p53 and Mdm2 expression in hgankyrin-injected embryos, RT-PCR, Northern blot and in-situ hybridization and BrdU immunostaining were used. In addition, to know the effect of hgankyrin on cell proliferation in vitro, cell viability assays such as MTT, trypan blue staining and RT-PCR following transfection of hgankyrin-containing vector into HEK 293 cell line were performed. In vivo results indicated that p53 mRNA levels decreased but those of Mdm2 were not decreased in the presence of hgankyrin. These results suggest that gankyrin downregulates p53 expression and not Mdm2 expression. In the study of cell proliferation, BrdU-positive cells were predominantly increased in the head and tail regions in hgankyrin-injected zebrafish. Additional in vitro studies using trypan blue staining and MTT assay showed that gankyrin-expressing HEK 293 cells proliferated at a faster rate, indicating that gankyrin promotes cell proliferation. Our results demonstrate that hgankyrin overexpression downregulates p53 expression and promotes cell proliferation in zebrafish. Gankyrin may play an important role in tumorigenesis via its effects on p53 and cell proliferation.  相似文献   

3.
We report the design of bisarylmethylene bromides as a new class of rigid, distance-matching cysteine cross-linkers. By cross-linking a peptide dual inhibitor of Mdm2/Mdmx containing cysteines at i,i+7 positions, dramatic enhancement in cell permeability was achieved, along with increased helicity and biological activity.  相似文献   

4.
《Chemistry & biology》1997,4(11):791-794
The cellular response to DNA damage is coordinated by the p53 protein. Mdm2, an oncoprotein, inhibits p53 and promotes p53 degradation. A recent high-resolution structure of the Mdm2-p53 complex may aid the design of small molecules to disrupt this interaction, for use in investigating the interaction further and for designing anticancer drugs.  相似文献   

5.
The p53 protein accumulates in human skin cells in vitro and in vivo when UV-irradiated. The transient stability of p53 requires a decrease in the activity of the ubiquitin ligase murine double minute 2 (Mdm2). Solar light irradiation (52.5, 105 and 405 mJ/cm2) of reconstructed human epidermis caused cutaneous damage. Specifically, UV-B induced the formation of sunburn cells and at first, an increase in the accumulation of p53 protein. Unexpectedly, 24 h after irradiation, a specific proteolytic cleavage of p53 resulted in the formation of a 40 kDa fragment. Both the accumulation of p53 and the proteolytic cleavage increased, commensurate with the UV dose. In contrast to p53, the level of expression of Mdm2 decreased drastically with the UV dose. It is important to note that calpastatin (20 microM), a specific inhibitor of calpains, decreased the formation of sunburn cells, inhibited the cleavage of p53 and induced an accumulation of Mdm2. The apoptotic process is strongly repressed. This demonstrates for the first time that calpains can participate in the down-regulation of Mdm2 in the epidermis very rapidly after UV irradiation, and that they contribute to a specific cleavage of p53 protein. All of these processes may be involved in the apoptotic response of the skin to UV stimulation.  相似文献   

6.
The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53–MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand–receptor 3D shape complementarity, to screen DrugBank database for novel p53–MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53–MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53–MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53–MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53–MDM2 inhibitors.  相似文献   

7.
We are currently witnessing a decline in the development of efficient new anticancer drugs, despite the salient efforts made on all fronts of cancer drug discovery. This trend presumably relates to the substantial heterogeneity and the inherent biological complexity of cancer, which hinder drug development success. Protein-protein interactions (PPIs) are key players in numerous cellular processes and aberrant interruption of this complex network provides a basis for various disease states, including cancer. Thus, it is now believed that cancer drug discovery, in addition to the design of single-targeted bioactive compounds, should also incorporate diversity-oriented synthesis (DOS) and other combinatorial strategies in order to exploit the ability of multi-functional scaffolds to modulate multiple protein-protein interactions (biological hubs). Throughout the review, we highlight the chemistry driven approaches to access diversity space for the discovery of small molecules that disrupt oncogenic PPIs, namely the p53-Mdm2, Bcl-2/Bcl-xL-BH3, Myc-Max, and p53-Mdmx/Mdm2 interactions.  相似文献   

8.
Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.  相似文献   

9.
Singh  Aditi  Goyal  Sukriti  Jamal  Salma  Subramani  Bala  Das  Mriganko  Admane  Nikita  Grover  Abhinav 《Structural chemistry》2016,27(3):993-1003

Tumor suppressor protein p53 maintains integrity of genome and regulates the genes responsible for DNA repair mechanism, apoptosis as well as cell cycle and growth arrest. As with murine double minute 2 (MDM2), the human homolog HDM2 is a principal cellular antagonist of p53. In unstressed cells, cellular levels of p53 and HDM2 are maintained in an autoregulatory manner in which both mutually control cellular levels of each other. About half of the human cancers express wild-type p53 protein that is antagonized by over-expressed HDM2. Restoring p53 function via HDM2 antagonists is a leading therapeutic approach for treating a variety of tumors. In this study, we have developed a novel statistically sound group-based QSAR (GQSAR) model using piperidine-derived compounds that have been validated experimentally to inhibit p53–HDM2 interaction. On the basis of developed GQSAR model, a combinatorial library of molecules was prepared and its activity was predicted. These molecules were then docked to HDM2, and two top-scoring molecules possessing a binding energy of ?6.639 and ?6.305 kcal/mol were selected for further study. These molecules and their binding poses were analyzed further via molecular dynamic simulations. In this study, we report two lead compounds as potent HDM2 inhibitors and also provide an insight into mechanism of interaction of the lead compounds to HDM2 target.

  相似文献   

10.
Constant current chronopotentiometry is employed in conjunction with cyclic voltammetry and ac voltammetry to present in‐depth interfacial characterisations of the adsorption behaviour of a peptide affinity probe (Cys‐p53), of a thiolated hepta(ethylene glycol) (t‐OEG) and of mixed monolayers of these at mercury electrodes. The peptide sequence is derived from the interaction site of the protein p53 with the protein Mdm2. The adsorbed Cys‐p53 peptide is catalytically active towards the hydrogen evolution reaction, giving rise to very intense peaks in chronopotentiometry, whereas the oligo(ethylene glycol) is not. This difference enables one to monitor the presence of the peptide within mixed monolayers. It is shown that in the binary layers, the adsorption of t‐OEG is kinetically favoured while Cys‐p53 is thermodynamically more strongly adsorbed.  相似文献   

11.
p53 is a tumor suppressor gene and mutation of p53 is a frequent event in skin cancer. The wild-type p53 encodes for a 53-kD phosphoprotein that plays a pivotal role in regulating cell growth and cell death. The wt-p53 gene is also called "guardian of the genome", for its role in preventing the accumulation of genetic alterations, observed in cancer cells. The wild-type p53 protein plays a central role in the response of the cell to DNA damage. UV, present in sunlight, is one of the most ubiquitously present DNA damage inducing stress conditions to which skin cells are exposed. The wt-p53 protein accumulates in human skin cells in vitro and in human skin in vivo upon UV irradiation. This upregulation mounts a protective response against permanent DNA damage through transactivation of either cell cycle arrest genes and DNA repair genes or genes that mediate the apoptotic response. The molecular events which regulate the activity of the wt-p53 protein activity are only beginning to be described.  相似文献   

12.
The complex between the tumor suppressor p53 and its down-regulator Mdm2 has been studied by dynamic force spectroscopy and the unbinding data have been analyzed in the framework of the Jarzynski theoretical approach. Accordingly, the unbinding equilibrium free energy has been determined from the work done along several non-equilibrium paths from the bound to the unbound state in the single molecule regime. An unbinding free energy of -8.4 kcal mol(-1) has been found for the complex; such a value is in a good agreement with that measured both in the bulk by isothermal titration calorimetry and that obtained from theoretical computing at the single molecule level. The determination of the unbinding free energy, together with the knowledge of the dissociation rate constant and energy barrier width, as previously obtained by dynamic force spectroscopy, adds rewarding insights on the energy landscape for this complex which is currently at the focus of anticancer drug design.  相似文献   

13.
根据p53基因的序列设计并合成了能特异性检测p53 mRNA的分子信标(MB), 发展了一种快速定量测定细胞内总RNA提取物中p53 mRNA的方法. 采用鼻咽癌(CNE2)细胞系和经RNA干扰技术降低p53基因表达的CNE2-p53RNAi细胞系, 抽提总RNA并用MB检测, 验证了MB的检测对象是p53 mRNA. 将该方法应用于多种肿瘤细胞内p53基因表达水平的分析, 表达变化趋势与经典的mRNA分析方法RT-PCR检测结果相符. 在此基础上, 用MB对5-氟尿嘧啶(5-Fu)处理的肺腺癌细胞(A549)进行了p53 mRNA的体外定量检测, 结果表明采用MB能够快速地获知该药物对细胞内p53 mRNA表达影响的信息.  相似文献   

14.
Intrinsically disordered proteins or intrinsically disordered regions (IDPs) have gained much attention in recent years due to their vital roles in biology and prevalence in various human diseases. Although IDPs are perceived as attractive therapeutic targets, rational drug design targeting IDPs remains challenging because of their conformational heterogeneity. Here, we propose a hierarchical computational strategy for IDP drug virtual screening (IDPDVS) and applied it in the discovery of p53 transactivation domain I (TAD1) binding compounds. IDPDVS starts from conformation sampling of the IDP target, then it combines stepwise conformational clustering with druggability evaluation to identify potential ligand binding pockets, followed by multiple docking screening runs and selection of compounds that can bind multi-conformations. p53 is an important tumor suppressor and restoration of its function provides an opportunity to inhibit cancer cell growth. TAD1 locates at the N-terminus of p53 and plays key roles in regulating p53 function. No compounds that directly bind to TAD1 have been reported due to its highly disordered structure. We successfully used IDPDVS to identify two compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells. Our study demonstrates that IDPDVS is an efficient strategy for IDP drug discovery and p53 TAD1 can be directly targeted by small molecules.

A hierarchical computational strategy for IDP drug virtual screening (IDPDVS) was proposed and successfully applied to identify compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells.  相似文献   

15.
Recently, the ubiquitin proteasome system (UPS) has matured as a drug discovery arena, largely on the strength of the proven clinical activity of the proteasome inhibitor Velcade in multiple myeloma. Ubiquitin ligases tag cellular proteins, such as oncogenes and tumor suppressors, with ubiquitin. Once tagged, these proteins are degraded by the proteasome. The specificity of this degradation system for particular substrates lies with the E3 component of the ubiquitin ligase system (ubiquitin is transferred from an E1 enzyme to an E2 enzyme and finally, thanks to an E3 enzyme, directly to a specific substrate). The clinical effectiveness of Velcade (as it theoretically should inhibit the output of all ubiquitin ligases active in the cell simultaneously) suggests that modulating specific ubiquitin ligases could result in an even better therapeutic ratio. At present, the only ubiquitin ligase leads that have been reported inhibit the degradation of p53 by Mdm2, but these have not yet been developed into clinical therapeutics. In this review, we discuss the biological rationale, assays, genomics, proteomics and three-dimensional structures pertaining to key targets within the UPS (SCFSkp2 and APC/C) in order to assess their drug development potential. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).  相似文献   

16.
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.  相似文献   

17.
The p53 protein exerts fundamental roles in cell responses to a variety of stress stimuli. It has clear roles in controlling cell cycle, triggering apoptosis, activating autophagy and modulating DNA damage response. Little is known about the role of p53 in autophagy‐associated cell death, which can be induced by photoactivation of photosensitizers within cells. The photosensitizer 1,9‐dimethyl methylene blue (DMMB) within nanomolar concentration regimes has specific intracellular targets (mitochondria and lysosomes), photoinducing a typical scenario of cell death with autophagy. Importantly, in consequence of its subcellular localization, photoactive DMMB induces selective damage to mitochondrial DNA, saving nuclear DNA. By challenging cells having different p53 protein levels, we investigated whether p53 modulates DMMB/light‐induced phototoxicity and cell cycle dynamics. Cells lacking p53 activity were slightly more resistant to photoactivated DMMB, which was correlated with a smaller sub‐G1 population, indicative of a lower level of apoptosis. DMMB photosensitization seems to induce mostly autophagy‐associated cell death and S‐phase cell cycle arrest with replication stress. Remarkably, these responses were independent on the p53 status, indicating that p53 is not involved in either process. Despite describing some p53‐related responses in cells challenged by photosensitization, our results also provide novel information on the consequences of DMMB phototoxicity.  相似文献   

18.
Protein–protein interactions (PPIs) are regarded as important, but undruggable targets. Intrinsically disordered p53 transactivation domain (p53TAD) mediates PPI with mouse double minute 2 (MDM2), which is an attractive anticancer target for therapeutic intervention. Here, using aerolysin nanopores, we probed the p53TAD peptide/MDM2 interaction and its modulation by small-molecule PPI inhibitors or p53TAD phosphorylation. Although the p53TAD peptide showed short-lived (<100 ms) translocation, the protein complex induced the characteristic extraordinarily long-lived (0.1 s ∼ tens of min) current blockage, indicating that the MDM2 recruitment by p53TAD peptide almost fully occludes the pore. Simultaneously, the protein complex formation substantially reduced the event frequency of short-lived peptide translocation. Notably, the addition of small-molecule PPI inhibitors, Nutlin-3 and AMG232, or Thr18 phosphorylation of p53TAD peptide, were able to diminish the extraordinarily long-lived events and restore the short-lived translocation of the peptide rescued from the complex. Taken together, our results elucidate a novel mechanism of single-molecule sensing for analyzing PPIs and their inhibitors using aerolysin nanopores. This novel methodology may contribute to remarkable improvements in drug discovery targeted against undruggable PPIs.

Using aerolysin nanopores, we probed protein–protein interaction (PPI) between p53TAD and MDM2 and its modulation by small-molecule PPI inhibitors and p53TAD phosphorylation.  相似文献   

19.
In this study we present a method for defining the binding modes of a set of structurally related isoindolinone inhibitors of the MDM2-p53 interaction. This approach derives the location and orientation of isoindolinone binding, based on an analysis of the patterns of magnitude and direction of chemical shift perturbations for a series of inhibitors of the MDM2-p53 interaction. The MDM2-p53 complex is an attractive target for therapeutic intervention in cancer cells with intact tumor suppressor p53, as it offers the possibility of releasing p53 by blocking the MDM2-p53 binding site with a small molecule antagonist to promote apoptosis. Isoindolinones are a novel class of MDM2-antagonists of moderate affinity, which still require the development of more potent candidates for clinical applications. As the applicability of conventional structural methods to this system is limited by a number of fundamental factors, the exploitation of the information contained in chemical shift perturbations has offered a useful route to obtaining structural information to guide the development of more potent compounds. For a set of 12 structurally related isoindolinones, the data suggests 4 different orientations of binding, caused by subtle changes in the chemical structure of the inhibitors.  相似文献   

20.
Several sesquiterpene lactones (STLs) have been tested as lead drugs in cancer clinical trials. Salograviolide-A (Sal-A) and salograviolide-B (Sal-B) are two STLs that have been isolated from Centaurea ainetensis, an indigenous medicinal plant of the Middle Eastern region. The parent compounds Sal-A and Sal-B were modified and successfully prepared into eight novel guaianolide-type STLs (compounds 1–8) bearing ester groups of different geometries. Sal-A, Sal-B, and compounds 1–8 were tested against a human colorectal cancer cell line model with differing p53 status; HCT116 with wild-type p53 and HCT116 p53−/− null for p53, and the normal-like human colon mucosa cells with wild-type p53, NCM460. IC50 values indicated that derivatization of Sal-A and Sal-B resulted in potentiation of HCT116 cell growth inhibition by 97% and 66%, respectively. The effects of the different molecules on cancer cell growth were independent of p53 status. Interestingly, the derivatization of Sal-A and Sal-B molecules enhanced their anti-growth properties versus 5-Fluorouracil (5-FU), which is the drug of choice in colorectal cancer. Structure-activity analysis revealed that the enhanced molecule potencies were mainly attributed to the position and number of the hydroxy groups, the lipophilicity, and the superiority of ester groups over hydroxy substituents in terms of their branching and chain lengths. The favorable cytotoxicity and selectivity of the potent molecules, to cancer cells versus their normal counterparts, pointed them out as promising leads for anti-cancer drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号