首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In this study, real-time displacement measurement of bridges was carried out by means of digital image processing techniques. This is innovative, highly cost-effective and easy to implement, and yet maintains the advantages of dynamic measurement and high resolution. First, the measurement point is marked with a target panel of known geometry. A commercial digital video camera with a telescopic lens is installed on a fixed point away from the bridge (e.g., on the coast) or on a pier (abutment), which can be regarded as a fixed point. Then, the video camera takes a motion picture of the target. Meanwhile, the motion of the target is calculated using image processing techniques, which require a texture recognition algorithm, projection of the captured image, and calculation of the actual displacement using target geometry and the number of pixels moved. Field tests were carried out for the verification of the present method. The test results gave sufficient dynamic resolution in amplitude as well as the frequency. Use of this technology for a large suspension bridge is discussed considering the characteristics of such bridges having low natural frequencies within 3 Hz and the maximum displacement of several centimeters.  相似文献   

2.
The digital image correlation (DIC) technique is successfully applied across multiple length scales through the generation of a suitable speckle pattern at each size scale. For microscale measurements, a random speckle pattern of paint is created with a fine point airbrush. Nanoscale displacement resolution is achieved with a speckle pattern formed by solution deposition of fluorescent silica nanoparticles. When excited, the particles fluoresce and form a speckle pattern that can be imaged with an optical microscope. Displacements are measured on the surface and on an interior plane of transparent polymer samples with the different speckle patterns. Rigid body translation calibrations and uniaxial tension experiments establish a surface displacement resolution of 1 μm over a 5×6 mm scale field of view for the airbrushed samples and 17 nm over a 100×100 μm scale field of view for samples with the fluorescent nanoparticle speckle. To demonstrate the capabilities of the method, we characterize the internal deformation fields generated around silica microspheres embedded in an elastomer under tensile loading. The DIC technique enables measurement of complex deformation fields with nanoscale precision over relatively large areas, making it of particular relevance to materials that possess multiple length scales.  相似文献   

3.
用数字散斑相关法研究聚氨酯泡沫塑料的压缩力学性能   总被引:3,自引:0,他引:3  
提出了一种改进的数字散班相关计算方法,使其能直接进行应变迭代,灵敏度可达1000με,并对它进行了验证试验。对于两种不同密度的聚氨酯泡沫塑料,采用改进的数字散斑相关法对其压缩力学性能进行了测试,得到了其应力——应变关系及弹性模量等力学参数。  相似文献   

4.
In this paper, the structural analysis of steel to aluminum overlap joint is performed with digital image correlation. For this, it is necessary (i) to find the mechanical response in the two sheets after welding and (ii) to find some structural information in order to assess modeling. Because the overlap joint is a peculiar structure with non uniform stress distribution, finite element seems to impose itself in order to assess failure. Thus, local mechanical behavior must be identified. Digital image correlation is an accurate method of identifying material behavior after welding. Once identified, the mechanical response is introduced in a model. Structural finite element model is then compared with some structural experimental measurements (strain field and out of plane displacement field).  相似文献   

5.
A new methodology is proposed to estimate displacement fields from pairs of images (reference and strained) that evaluates continuous displacement fields. This approach is specialized to a finite-element decomposition, therefore providing a natural interface with a numerical modeling of the mechanical behavior used for identification purposes. The method is illustrated with the analysis of Portevin–Le Chatelier bands in an aluminum alloy sample subjected to a tensile test. A significant progress with respect to classical digital image correlation techniques is observed in terms of spatial resolution and uncertainty.  相似文献   

6.
Large plastic deformation in sheets made of dual phase steel DP800 is studied experimentally and numerically. Shear testing is applied to obtain large plastic strains in sheet metals without strain localisation. In the experiments, full-field displacement measurements are carried out by means of digital image correlation, and based on these measurements the strain field of the deformed specimen is calculated. In the numerical analyses, an elastoplastic constitutive model with isotropic hardening and the Cockcroft–Latham fracture criterion is adopted to predict the observed behaviour. The strain hardening parameters are obtained from a standard uniaxial tensile test for small and moderate strains, while the shear test is used to determine the strain hardening for large strains and to calibrate the fracture criterion. Finite Element (FE) calculations with shell and brick elements are performed using the non-linear FE code LS–DYNA. The local strains in the shear zone and the nominal shear stress-elongation characteristics obtained by experiments and FE simulations are compared, and, in general, good agreement is obtained. It is demonstrated how the strain hardening at large strains and the Cockcroft–Latham fracture criterion can be calibrated from the in-plane shear test with the aid of non-linear FE analyses. An erratum to this article can be found at  相似文献   

7.
Methods for patterning metal thin films at the microscale and nanoscale by applying the patterns to metallic and polymeric materials for use in shape and deformation measurements in a scanning electron microsope (SEM) or other high magnification imaging system are described. In one approach, thin films of metallic materials (e.g., Au, Ag, Cu, and Cr) are applied to a variety of substrates. The coated samples are then placed into a reaction vessel, where the specimens are heated and exposed to a nitrogen atmosphere saturated with selected volatile chemicals. This process results in nano-scale remodeling of the metallic films, thereby affording high contrast random patterns with different morphologies. In a second approach, thin films of metallic materials, including gold and silver, also have been applied using a simplified UV photolithographic method requiring a minimum amount of laboratory preparation. Using selected substrates, both methods have been used successfully to transfer patterns onto polymeric and metallic materials ranging from 50–500 nanometers with chemical vapor rearrangement and 2 to 20 microns with UV photolithography, providing a pattern that can be used with digital image correlation to quantify both the surface profile and also surface deformations at reduced length scales.  相似文献   

8.
Using recently developed methods for application of a nano-scale random pattern having high contrast during SEM imaging, baseline full-field thermal deformation experiments have been performed successfully in an FEI Quanta SEM using 2D-DIC methods. Employing a specially redesigned commercial heating plate and control system, with modified specimen attachment procedures to minimize unwanted image motions, recently developed distortion correction procedures were shown to be effective in removing both drift and spatial distortion fields under thermal heating. 2D-DIC results from heating experiments up to 125°C on an aluminum specimen indicate that (a) the fully corrected displacement components have nearly random variability and a standard deviation of 0.02 pixels (≈25 nm at 200× and ≈0.5 nm at 10,000×) in each displacement component and (b) the unbiased measured strain fields have a standard deviation ≈150 × 10−6 and a mean value that is in good agreement with independent measurements, confirming that the SEM-DIC based method can be used for both micro-scale and nano-scale thermal strain measurements.
H. W. Schreier (SEM member)URL: www.correlatedsolutions.com
  相似文献   

9.
Refractory castables exhibit very low fracture strain levels when subjected to tension or bending. The main objective of this work is to show that 3-D digital image correlation (3-D DIC) allows such low strain levels to be measured. Compared to mechanical extensometer measurements, 3-D DIC makes it possible to reach similar strain resolution levels and to avoid the problem of position dependance related to the heterogeneous nature of the strain and to strain localization phenomena. First, the 3-D DIC method and the experimental set-up are presented. Secondly, an analysis of the 3-D DIC method is performed in order to evaluate the resolution, the standard uncertainty and the spatial resolution for both displacement and strain measurements. An optimized compromise between strain spatial resolution and standard uncertainty is reached for the configuration of the experimental bending test. Finally, the macroscopic mechanical behavior of a fiber reinforced refractory castable (FRRC) is studied using mechanical extensometry and 3-D DIC in the case of tensile and four-point bending tests. It is shown that similar results are obtained with both methods. Furthermore, in the case of bending tests on damaged castable, 3-D DIC results demonstrate the ability to determine Young’s modulus from heterogeneous strain fields better than by using classical beam deflection measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号