首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Nuclear Physics B》2003,658(3):373-396
A one-dimensional system of nonintersecting Brownian particles is constructed as the diffusion scaling limit of Fisher's vicious random walk model. N Brownian particles start from the origin at time t=0 and undergo mutually avoiding motion until a finite time t=T. Dynamical correlation functions among the walkers are exactly evaluated in the case with a wall at the origin. Taking an asymptotic limit N→∞, we observe discontinuous transitions in the dynamical correlations. It is further shown that the vicious walk model with a wall is equivalent to a parametric random matrix model describing the crossover between the Bogoliubov–deGennes universality classes.  相似文献   

2.
The one-dimensional overdamped Brownian motion in a symmetric periodic potential modulated by external time-reversible noise is analyzed. The calculation of the effective diffusion coefficient is reduced to the mean first passage time problem. We derive general equations to calculate the effective diffusion coefficient of Brownian particles moving in arbitrary supersymmetric potential modulated by: (i) an external white Gaussian noise and (ii) a Markovian dichotomous noise. For both cases the exact expressions for the effective diffusion coefficient are derived. We obtain acceleration of diffusion in comparison with the free diffusion case for fast fluctuating potentials with arbitrary profile and for sawtooth potential in case (ii). In this case the parameter region where this effect can be observed is given. We obtain also a finite net diffusion in the absence of thermal noise. For rectangular potential the diffusion slows down, for all parameters of noise and of potential, in comparison with the case when particles diffuse freely.  相似文献   

3.
An assembly of "nonpassing" particles diffusing on a one-dimensional periodic substrate is shown to undergo single-file diffusion for both noiseless (ballistic) and stochastic dynamics. The dependence of the corresponding diffusion coefficients on the density and temperature of the particles and on the substrate parameters is determined by means of numerical simulations and analytically interpreted within the formalism of standard Brownian motion.  相似文献   

4.
5.
Brownian particles suspended in disordered crowded environments often exhibit non-Gaussian normal diffusion (NGND), whereby their displacements grow with mean square proportional to the observation time and non-Gaussian statistics. Their distributions appear to decay almost exponentially according to “universal” laws largely insensitive to the observation time. This effect is generically attributed to slow environmental fluctuations, which perturb the local configuration of the suspension medium. To investigate the microscopic mechanisms responsible for the NGND phenomenon, we study Brownian diffusion in low dimensional systems, like the free diffusion of ellipsoidal and active particles, the diffusion of colloidal particles in fluctuating corrugated channels and Brownian motion in arrays of planar convective rolls. NGND appears to be a transient effect related to the time modulation of the instantaneous particle’s diffusivity, which can occur even under equilibrium conditions. Consequently, we propose to generalize the definition of NGND to include transient displacement distributions which vary continuously with the observation time. To this purpose, we provide a heuristic one-parameter function, which fits all time-dependent transient displacement distributions corresponding to the same diffusion constant. Moreover, we reveal the existence of low dimensional systems where the NGND distributions are not leptokurtic (fat exponential tails), as often reported in the literature, but platykurtic (thin sub-Gaussian tails), i.e., with negative excess kurtosis. The actual nature of the NGND transients is related to the specific microscopic dynamics of the diffusing particle.  相似文献   

6.
We consider a large number of particles on a one-dimensional latticel Z in interaction with a heat particle; the latter is located on the bond linking the position of the particle to the point to which it jumps. The energy of a single particle is given by a potentialV(x), xZ. In the continuum limit, the classical version leads to Brownian motion with drift. A quantum version leads to a local drift velocity which is independent of the applied force. Both these models obey Einstein's relation between drift, diffusion, and applied force. The system obeys the first and second laws of thermodynamics, with the time evolution given by a pair of coupled non linear heat equations, one for the density of the Brownian particles and one for the heat occupation number; the equation for a tagged Brownian particle can be written as a stochastic differential equation.  相似文献   

7.
Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.  相似文献   

8.
9.
The problem of the diffusion of particles in a tube consisting of identical units, each composed of a wide and narrow section is solved. With an approach based on reducing the problem to a one-dimensional, the statistics of times of particle transition between adjacent sections is determined, which is a detailed characteristic of the diffusion process. An expression for the effective diffusion coefficient D ef , defining the slow-down of transport due to variations of the tube profile, is derived. It is shown that D ef behaves monotonically with increasing length of both the narrow and wide sections. The predictions of analytical formulas are in good agreement with the results of computer simulation performed by the Brownian dynamics method.  相似文献   

10.
张颖  郑宇  何茂刚 《物理学报》2018,67(16):167801-167801
光散射技术通过测量悬浮液中布朗运动颗粒的平移扩散系数,得到颗粒流体力学直径或液体黏度.本文由单参数模型入手,建立了低颗粒浓度下,单颗粒平移扩散系数与颗粒集体平移扩散系数和颗粒浓度之间的线性依存关系并将其引入光散射法中,从而对现有的测量方法进行了改进.改进后的测量方法可实现纳米尺度球型颗粒标称直径的测量和液体黏度的绝对法测量.以聚苯乙烯颗粒+水和二氧化硅颗粒+乙醇两个分散系为参考样本,通过实验,验证了改进后方法的可行性.此外,还针对上述两个分散系,实验探讨了温度和颗粒浓度对颗粒集体平移扩散系数的影响规律,发现聚苯乙烯颗粒+水分散系中,颗粒间相互作用表现为引力;二氧化硅颗粒+乙醇分散系中,颗粒间相互作用表现为斥力.讨论了颗粒集体平移扩散系数随颗粒浓度变化规律与第二渗透维里系数的关系.  相似文献   

11.
12.
The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.  相似文献   

13.
The transport of a symmetric periodic potential driven by a static bias and correlated noises is investigated for both the over-damped case and the under-damped case. By both theoretical approximation and numerical simulations, we study steady current of an over-damped Brownian particle moving in the potential. It is shown that the symmetric periodic potential driven by a static bias and the correlated noises is simultaneously able to exhibit directional transport, a single current reversal, as well as a double current reversal. For the under-damped case, we examine the dynamic at various inertial strengths by direct simulations of the stochastic differential equations. We specially focus on the influence of inertial term in the particle dynamics for the noise induced, directed current. Different directions of the steady current is found for different masses of the particles, thus an efficient scheme to separate the Brownian particles according to their mass is suggested.  相似文献   

14.
Driven diffusion of a Brownian particle along a one-dimensional lattice is investigated numerically on decreasing its damping constant. The notions of multiple jumps, jump reversal, and backward-to-forward rates are discussed in detail. In particular, we conclude that in the underdamped limit backward jumps are suppressed relative to forward jumps more effectively than previously assumed. The dependence of such a drive-controlled mechanism on the damping constant and the temperature is interpreted analytically.  相似文献   

15.
We investigate, using quasi-elastic light scattering, some features of the long-wavelength, low-frequency modes of the hexagonal phase often encountered in the study of lyotropic (surfactant-solvent) systems. The hexagonal phase is swollen by an oil-based ferrofluid, allowing magnetically aligned samples to be prepared. We show experimentally the anisotropy of the two lowest-frequency modes. We develop a model which predicts that these slow modes are associated to particle diffusion and tube motion. With the help of microscopic as well as phenomenological analyses, we suggest that the latter presumably corresponds to a peristaltic mode. Confinement effects on the one-dimensional, Brownian diffusion of the colloids along the tube axis together with the coupling between the two modes are studied experimentally, varying the tube diameter to particle size ratio. Received 7 July 1999  相似文献   

16.
We study the diffusion of a quantum Brownian particle in a one-dimensional periodic potential with substitutional disorder. The particle is coupled to a dissipative environment, which induces a frictional force proportional to the velocity. The dynamics for arbitrary temperature is studied by using Feynman's influence-functional theory. We calculate the mobility to lowest order in the disorder and strength of the periodic potential. It is shown that for weak dissipation the linear mobility, which vanishes atT=0 due to localization effects, may exhibit a maximum and a subsequent minimum with increasing temperature. The relation to the diffusion of heavy particles in metals or doped semiconductors is briefly discussed.  相似文献   

17.
When a Brownian object interacts with noninteracting gas particles under nonequilibrium conditions, energy dissipation associated with Brownian motion causes an additional force on the object as a "momentum transfer deficit." This principle is demonstrated first by a new nonequilibrium steady state model and then applied to several known models such as an adiabatic piston for which a simple explanation has been lacking.  相似文献   

18.
The diffusion tensor for a Brownian particle in a periodic field of force is studied in the strong damping limit, in which the Smoluchowski equation is valid.A general relation between the diffusion tensor and the Smoluchowski “relaxation operator” is derived; the effect of the periodic force, at least in the simplest situation of diagonal and uniform friction, appears as a dressing of the bare particle mass to an effective tensor mass.From this the explicit form of the diffusion coefficient as a functional of the potential energy in the one-dimensional case is obtained, showing a temperature dependence which deviates at high temperatures from a simple Arrhenius behaviour.Finally, the expression for the mobility of the Brownian particle is derived, and by comparison with the expression for the diffusion coefficient the Einstein relation between diffusion and mobility is proved to be satisfied.  相似文献   

19.
A theory is developed of Brownian motion in granular gases (systems of many macroscopic particles undergoing inelastic collisions), where the energy loss in inelastic collisions is determined by a restitution coefficient ɛ. Whereas previous studies used a simplified model with ɛ = const, the present analysis takes into account the dependence of the restitution coefficient on relative impact velocity. The granular temperature and the Brownian diffusion coefficient are calculated for a granular gas in the homogeneous cooling state and a gas driven by a thermostat force, and their variation with grain mass and size and the restitution coefficient is analyzed. Both equipartition principle and fluctuation-dissipation relations are found to break down. One manifestation of this behavior is a new phenomenon of “relative heating” of Brownian particles at the expense of cooling of the ambient granular gas.  相似文献   

20.
According to the fission diffusion model,the deformation motion of fission nucleues is regarded as a diffusion process of quasi-Brownian particles under fission potential,Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo method,the effect of nuclear viscosity on Brownian particle diffusion is studied,Dynamical quantities,suchas fission rate,kinetic energy distribution on scission,and so on are numerally calculated for various viscosity coefficients,The results are reasonable in physics,This method can be easily extended to deal with multi-dimensional diffusion problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号