首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Abstract

A techno-economic study on the outside plant costs of fiber-to-the-X infrastructures is presented in this article. Standardized passive optical network and active optical network technologies, implemented in fiber-to-the-home architectures, are presented/compared in terms of costs. Future architectures based on passive optical networks are investigated, their outside plant infrastructure, and corresponding costs are reviewed. Cost comparisons of fiber-to-the-X infrastructures reveal significant differences. Besides fiber-to-the-node being the less costly, it is shown that the cost of high splitting ratio passive optical network fiber-to-the-home infrastructures is not increasing linearly with the splitting ratio. The highest splitting ratio is not always the one with the largest savings percentage. Referring to current and future fiber-to-the-home access network architectures/technologies, the flexibility of wavelength division multiplexing/time division multiplexing passive optical networks is estimated to reach a 40% reduction in outside plant cost compared with the home run architecture.  相似文献   

2.
Abstract

A novel bandwidth assignment algorithm in wavelength division multiplexing Ethernet passive optical networks, called a dynamic wavelength assignment service level agreement, is proposed to efficiently provide subscriber differentiation. Simulation results show that the dynamic wavelength assignment service level agreement outperforms other bandwidth allocation algorithms in wavelength division multiplexing Ethernet passive optical networks, as it makes a fairer bandwidth distribution than other methods and is able to overcome the non-allowed packet fragmentation of the Ethernet passive optical network standard. Consequently, it greatly increases the achieved throughput and always ensures a minimum guaranteed bandwidth to every priority subscriber. Furthermore, the new algorithm obtains lower mean packet delay and packet loss rate for the highest priority subscribers when compared with other bandwidth distribution schemes in wavelength division multiplexing Ethernet passive optical networks.  相似文献   

3.
Abstract

A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.  相似文献   

4.
In this work, we show some experimental approaches concerning optical network design dedicated to 5G infrastructures. In particular, we show some implementations of network slicing based on Carrier Ethernet forwarding, which will be very suitable in the context of 5G heterogeneous networks, especially looking at services for vertical enterprises. We also show how to adopt a central unit (orchestrator) to automatically manage such logical paths according to quality-of-service requirements, which can be monitored at the user location. We also illustrate how novel all-optical processes, such as the ones based on all-optical wavelength conversion, can be used for multicasting, enabling development of TV broadcasting based on 4G–5G terminals. These managing and forwarding techniques, operating on optical links, are tested in a wireless environment on Wi-Fi cells and emulating LTE and WiMAX systems by means of the NS-3 code.  相似文献   

5.
Abstract

In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet–wavelength division multiplexing optical code division multiplexing–passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet–passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet–passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.  相似文献   

6.
Visible light communication (VLC) has emerged as a viable complement to traditional radio frequency (RF) based systems and as an enabler for high data rate communications for beyond-5G (B5G) indoor communication systems. In particular, the emergence of new B5G-based applications with quality of service (QoS) requirements and massive connectivity has recently led to research on the required service-levels and the development of improved physical (PHY) layer methods. As part of recent VLC standards development activities, the IEEE has formed the 802.11bb “Light Communications (LC) for Wireless Local Area Networking” standardization group. This paper investigates the network requirements of 5G indoor services such as virtual reality (VR) and high-definition (HD) video for residential environments using VLC. In this paper, we consider such typical VLC scenarios with additional impairments such as light-emitting diode (LED) nonlinearity and imperfect channel feedback, and propose hyperparameter-free mitigation techniques using Reproducing Kernel Hilbert Space (RKHS) methods. In this context, we also propose using a direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM)-based adaptive VLC transmission method that uses precomputed bit error rate (BER) expressions for these RKHS-based detection methods and performs adaptive BER-based modulation-order switching. Simulations of channel impulse responses (CIRs) show that the adaptive transmission method provides significantly improved error rate performance, which makes it promising for high data rate VLC-based 5G indoor services.  相似文献   

7.
The rapidly increasing number of mobile devices, voluminous data, and higher data rate are pushing to rethink the current generation of the cellular mobile communication. The next or fifth generation (5G) cellular networks are expected to meet high-end requirements. The 5G networks are broadly characterized by three unique features: ubiquitous connectivity, extremely low latency, and very high-speed data transfer. The 5G networks would provide novel architectures and technologies beyond state-of-the-art architectures and technologies. In this paper, our intent is to find an answer to the question: “what will be done by 5G and how?” We investigate and discuss serious limitations of the fourth generation (4G) cellular networks and corresponding new features of 5G networks. We identify challenges in 5G networks, new technologies for 5G networks, and present a comparative study of the proposed architectures that can be categorized on the basis of energy-efficiency, network hierarchy, and network types. Interestingly, the implementation issues, e.g., interference, QoS, handoff, security–privacy, channel access, and load balancing, hugely effect the realization of 5G networks. Furthermore, our illustrations highlight the feasibility of these models through an evaluation of existing real-experiments and testbeds.  相似文献   

8.
Software-defined networks (SDN) has emerged with the capability to program in order to enhance flexibility, management, and testing of new ideas in the next generation of networks by removing current network limitations. Network virtualization and functionalization are critical elements supporting the delivery of future network services, especially in 5G networks. With the integration of virtualization and functionalization, network resources can be provisioned on-demand, and network service functions can be composed and chained dynamically to cater to various requirements. 5G networks are expected to rely heavily on SDN, which has been widely applied in core network design. To have a software-defined 5G network, not only is new spectrum and interface needed from SDN, but also a programmable and efficient hardware infrastructure is required. Admittedly, hardware components and infrastructure play an important role in supporting 5G networks. In other words, the software-defined 5G network data plane must have the required flexibility and programmability to support upcoming needs and technologies. Technological solutions need to respond to actual requests in infrastructure. Packet parsers in the data plane of software-defined 5G networks are one of the most important components because of the variation in the type of network headers and protocols. Each SDN switch needs to identify headers for processing input packets in the data plane, where the packet parser operates. Multiple implementations of packet parsers have been done on different substrates that occupy large hardware resources and areas on chip. However, they are not suitable for software-defined 5G networks. Certain architectures have been presented for packet parsing, aimed at accelerating the process of header parsing, however no attention has been paid toward reducing the area and the volume of the needed hardware resources and programmability in the data plane. This paper presents a new and efficient architecture for packet parsers on Field Programmable Gate Arrays (FPGA), called Efficient FPGA Packet Parser (EFPP) in a designed software-defined 5G network. This architecture emphasizes the removal of Ternary Content Addressable Memory (TCAM) to decrease hardware resources and efficiency in the data plane. Moreover, this architecture uses the chip’s processing speed and reconfiguration capabilities to support new protocols and network headers while maintaining flexibilities on software-defined 5G networks. EFPP is applied to chips on FPGA Xilinx ZedBoard Zynq, and the resources consumed around 7.5% LookUp Table, 1.9% Flip-Flops, and 5.8% of the memory. EFPP was also more area efficient. According to our results, EFPP would reduce the area and volume of hardware compared to other peer works.  相似文献   

9.
The combination of subcarrier multiplexing and passive optical networks can provide an efficient and cost-effective solution for fiber and wireless convergence in access networks. Moreover, to reduce operational expenditures, a reliable monitoring technique should provide in-service evaluation of the physical layer. Here, we perform the experimental demonstration of an SCM-PON system with baseband embedded optical time-domain reflectometer monitoring. Different modulation formats were tested to evaluate the penalty generated by the monitoring system. Based on the long-term evolution downlink test model (E-TM 3.1), our results show negligible power penalty while achieving a ~12-dB dynamic range with 10-m spatial resolution.  相似文献   

10.
Abstract

This work considers different unbundling options for local loop unbundling in order to provide multi-operator access and consider the economical impact for the fiber-to-the-home next-generation access entrants to deploy such alternatives. It is shown that deploying wavelength division multiplexing networks is an efficient strategy to perform local loop unbundling while upgrading the gigabit passive optical network for the new era where high bandwidths are necessary for satisfying customer demand. In areas with a high population density, wavelength division multiplexing techniques are the most suitable for entrant operators to access the incumbent's network and provide service.  相似文献   

11.
The paper presents a method of selecting an optical channel for transporting the double-sideband radio-frequency-over-fiber (DSB-RFoF) radio signal over the optical fronthaul path, avoiding the dispersion-induced power penalty (DIPP) phenomenon. The presented method complements the possibilities of a short-range optical network working in the flexible dense wavelength division multiplexing (DWDM) format, where chromatic dispersion compensation is not applied. As part of the study, calculations were made that indicate the limitations of the proposed method and allow for the development of an algorithm for effective optical channel selection in the presence of the DIPP phenomenon experienced in the optical link working in the intensity modulation–direct detection (IM-DD) technique. Calculations were made for three types of single-mode optical fibers and for selected microwave radio carriers that are used in current systems or will be used in next-generation wireless communication systems. In order to verify the calculations and theoretical considerations, a computer simulation was performed for two types of optical fibers and for two selected radio carriers. In the modulated radio signal, the cyclic-prefix orthogonal frequency division multiplexing (CP-OFDM) format and the 5G numerology were used.  相似文献   

12.
The fiber-wireless (FiWi) access network is a prestigious architecture for next generation (NG) access network. NG access networks are proposed to provide high data rate, broadband multiple services, scalable bandwidth, and flexible communication for manifold wireless end-users (WEUs). In this paper, the FiWi access network is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul with data rate of 2.5 Gb/s and wireless fidelity-worldwide interoperability for microwave access (WiFi–WiMAX) technologies at the wireless front-end along a 50 m–5 km wireless links with data rate of 54–30 Mb/s, respectively. The performance of the optical backhaul and the wireless front-end, in the proposed FiWi access network, has been evaluated in terms of bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR) of the physical (PHY) layer. The scalability of the optical backhaul based on maximum split ratio of 1/32 for each wavelength channel and a fiber length of 24 km from the central office (CO) to the access point (AP) is analyzed with bit error rate (BER) of 10−9.  相似文献   

13.
Abstract

This article experimentally demonstrates a hybrid fiber–free-space passive optical network that enables high spectral density, aggregated capacity, and total throughput through ultra-dense wavelength-division multiplexing baseband and radio-over-fiber channels. Ultra-dense wavelength-division multiplexing 10-Gb/s Nyquist-shaped 16-ary quadrature amplitude modulation, 10-Gb/s radio-over-fiber orthogonal frequency-division multiplexing, and 8.75-Gb/s baseband orthogonal frequency-division multiplexing signals per user were transmitted through a maximum 40-km passive optical network, which includes a 6-m free-space optics link with acceptable performance.  相似文献   

14.
Abstract

Mode-division multiplexing requires all-optical signal processing techniques that are able to deal with a new coding dimension, the spatial mode. In this context, optical microwires emerge as a potential highly non-linear and multi-modal waveguide envisioning the development of all-optical signal processing devices to mode-division multiplexing systems based on the four-wave mixing process. The inter- and intramodal phase-matching conditions for the four-wave mixing process are mapped as a function of the microwire diameter and the wavelength of signals. Moreover, the efficiency of four-wave mixing considering a strong guiding regime is investigated in the multi-modal regime.  相似文献   

15.
Recent progress of integrated optics planar lightwave circuits   总被引:7,自引:0,他引:7  
Planar lightwave circuits (PLCs) are waveguide devices that integrate fiber-matched optical waveguides on silicon or glass substrate to provide an efficient means of interaction for the guided-wave optical signals. PLCs provide various important and functional devices for optical wavelength division multiplexing (WDM), time division multiplexing (TDM) systems and subscriber networks. This paper reviews the recent progress and future prospects of PLC technologies including arrayed-waveguide grating multiplexers, optical add/drop multiplexers, programmable dispersion equalizers and hybrid optoelectronics integration technologies.  相似文献   

16.
It has been predicted that by the year 2030, 5G and beyond 5G (B5G) networks are expected to provide hundreds of trillions of gigabytes of data for various emerging applications such as augmented, mixed, and virtual reality (AR/MR/VR), wireless computer-brain interfaces (WCBI), connected robotics and autonomous systems. Most of these applications share data with each other using an open channel, i.e., the Internet. The open and broadcast nature of wireless channel makes the communication susceptible to various types of attacks (e.g., eavesdropping, jamming). Thus, there is a strong requirement to enhance the secrecy of wireless channel to maintain the privacy and confidentiality of transmitted data. Physical layer security (PLS) has evolved as a novel concept and robust alternative to cryptography-based techniques, which have a number of drawbacks and practical issues for 5G and beyond networks. Beamforming is an energy-efficient PLS technique, that involves steering of the transmitted signal in a particular direction, while considering that an intruding user attempts to decode the transmitted data. Motivated from these points, this article summarizes various beamforming based PLS techniques for secure data transmission in 5G and B5G networks. We investigate the eight most promising techniques for beamforming in PLS: Non-Orthogonal Multiple Access (NOMA), Full-Duplex Networks, Massive Multiple-Input Multiple-Output (MIMO), Cognitive Radio (CR) Network, Relay Network, Simultaneous Wireless Information and Power Transfer (SWIPT), UAV Communication Networks and Space Information Networks, and Heterogeneous Networks. Moreover, various physical layer threats and countermeasures associated with 5G and B5G networks are subsequently covered. Lastly, we provide insights to the readers about constraints and challenges for the usage of beamforming-based PLS techniques in various upcoming future applications.  相似文献   

17.
An extended reach 10 Gb/s wavelength division multiplexing passive optical networks (WDM-PONs) system based on reflective semiconductor optical amplifier (RSOA) is proposed by using power pre-emphasized orthogonal frequency division multiplexing (OFDM) signal. Experimental results show that the proposed technique can effectively enhance the system performance against the limited bandwidth and chirp induced fading effect from direct modulation of RSOA. The receiver sensitivity is improved by 5 dB at the limit of BER for forward error correction (FEC) code over the 60 km and 85 km fiber transmission without any dispersion compensation module.  相似文献   

18.
Abstract

This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.  相似文献   

19.

The following article describes an advanced dense wavelength division multiplexing (DWDM) Optical Network developed by L-3 Photonics. The network, configured as an amplified optical bus, carries traffic simultaneously in both directions, using multiple wavelengths. As a result, data distribution is of the form peer-to-multi-peer, it is protocol independent, and it is scalable. The network leverages the rapid growth in commercial optical technologies, including wavelength division multiplexing (WDM), and when applied to military and commercial platforms such as aircraft, ships, unmanned and other vehicles, provides a cost-effective, low-weight, high-speed, and high noise-immune data distribution system.  相似文献   

20.
Abstract

Optical networks are evolving at a fast pace from traditional synchronous digital hierarchy/synchronous optical network (SDH/SONET) and wavelength division multiplexing (WDM) infrastructures, used by client network layers in overlay mode, to a converged multi-service and multi-technology network able to transport traditional time division multiplexing (TDM) traffic and new packet traffic in a flexible way. Alcatel-Lucent is leading the network transformation required by network providers to offer data transport while guaranteeing the same quality and reliability typical of classical transport services. The introduction of new data communication services requires an evolution of the network management platform that needs to integrate new management applications associated with the new technologies and services. The resulting network has to be integrated from service provisioning and management system viewpoints to optimize its use and to reduce the in-field modifications of the transport network. This article describes specificities in the management of multi-service networks, identifying the management architecture able to support the rapid evolution of such environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号