首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural parameters, elastic constants, thermodynamic properties of Imm2-BN under high pressure were calculated via the density functional theory in combination with quasi-harmonic Debye approach. The results showed that the pressure has the significant effect on the equilibrium lattice parameters, elastic and thermodynamic properties of Imm2-BN. The obtained ground state structural parameters are in good agreement with previous theoretical results. The elastic constants, elastic modulus, and elastic anisotropy were determined in the pressure range of 0–90?GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is evaluated and the elastic anisotropy of the Imm2-BN up to 90?GPa is studied in detail. Moreover, the pressure and temperature dependence of thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameter are predicted in a wide pressure (0–90?GPa) and temperature (0–1600?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of Imm2-BN.  相似文献   

2.
The structural, elastic and thermodynamic properties of thorium tetraboride (ThB4) have been investigated by using first-principles plane-wave pseudopotential density functional theory with generalized gradient approximation. The behaviors of structural parameters under 0-70 GPa hydrostatic pressure are studied by means of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) geometry optimization scheme. By using the stress-strain method, single crystal elastic constants are calculated to test the mechanical stability of the crystal structure and to determine mechanical properties such as bulk modulus at each pressure. However, in order to study the thermodynamic properties of ThB4, the quasi-harmonic Debye model is used. Then, the dependencies of bulk modulus, heat capacities, thermal expansions, Grüneisen parameters and Debye temperatures on the temperature and pressure are obtained in the whole pressure range 0-70 GPa and temperature range 0-1500 K.  相似文献   

3.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

4.
The first-principles methods have been employed to calculate the structural, electronic, and mechanical properties of the α, β, and γ phases of uranium under pressure up to 100 GPa. The electronic structure has been viewed in forms of density of states and band structure. The mechanical stability of metal U in the α, β, and γ phases have been examined.The independent elastic constants, polycrystalline elastic moduli, as well as Poisson's ratio have been obtained. Upon compression, the elastic constants, elastic moduli, elastic wave velocities, and Debye temperature of α phase are enhanced pronouncedly. The value of B/G illustrates that α and γ phases are brittle in ground state.  相似文献   

5.
The structural, electronic, elastic and thermodynamic properties of α-phase Na3N under pressure are investigated by performing first principles calculations within generalized gradient approximation. The elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio dependencies on pressure are also calculated. The thermodynamic properties of the α-phase Na3N are calculated using the quasi-harmonic Debye model. The dependencies of the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameter on pressure and temperature are investigated systematically in the ranges of 0–1 GPa and 0–100 K.  相似文献   

6.
The structural, mechanical and thermodynamic properties of copper scandium CuSc intermetallic compound under temperature and pressure have been investigated using the plane wave (PW) - pseudopotential (PP) approach in the framework of the density functional theory (DFT). The structural parameters at equilibrium, the elastic moduli, the mechanical stability criteria and the sound velocity are studied in the pressure range 0–12 GPa. In addition, the heat capacity, the Grüneisen parameter, the Debye temperature, the entropy, and the thermal expansion coefficient are studied for temperatures ranging from 0 up to 1000 K. The equilibrium lattice parameter found is around 3.261 Å. It is in good agreement with the experimental one of 3.25 Å reported in the literature. According to the generalized elastic stability criteria, we predict the occurrence of a phase transition of the B2-type structure at 25.5 GPa. At room temperature and zero-pressure, the isothermal bulk modulus and the Grüneisen parameter found were 80.86 GPa and 2.04 respectively.  相似文献   

7.
本文利用密度泛函理论中的广义梯度近似对碳化钨晶体的三种结构(碳化钨相、闪锌矿相以及纤锌矿相)进行了优化,得到能量最低的稳定构型,并在此基础上计算了它的力学、电子、光学和高温高压下的热力学性质.研究表明:在0~300 GPa压力范围内,碳化钨相具有最高的稳定性.同时,高压下碳化钨相的弹性常数满足Born-Huang准则,且0 GPa和300 GPa下的声子色散没有虚频,证明了高压下碳化钨相的静力学稳定性和动力学稳定性.电子性质表明了碳化钨的金属性.光学性质表明碳化钨在高能区很难吸收光.热力学性质的研究表明:体积比V/V_0对压强的变化更敏感;高温时C_V曲线近似一条直线;给定压强下热膨胀系数α在600 K温度以上增长非常缓慢;压强对德拜温度Θ_D的影响较大;在低压下格林艾森系数γ的变化较大.  相似文献   

8.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

9.
The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03 program. The lattice parameters, the bulk modulus, the heat capacity, the Grüneisen parameter, and the Debye temperature are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the relationship between V/V0 and pressure, the elastic constants underhigh pressure are successfully obtained. Especially, the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations of the thermal expansion α with pressure P and temperature T are obtained systematically in the ranges of 0-870 GPa and 0-1600 K.  相似文献   

10.
The structural, elastic, and thermodynamic properties of cubic-Fe 2 TiAl under high temperatures and pressures are investigated by performing ab initio calculation and using the quasi-harmonic Debye model. Some ground state properties such as lattice constant, bulk modulus, pressure derivative of the bulk modulus, and elastic constants are in good agreement with the available experimental results and theoretical data. The thermodynamic properties of Fe 2 TiAl such as thermal expansion coefficient, Debye temperature, and heat capacity in ranges of 0 K-1200 K and 0 GPa-250 GPa are also obtained. The calculation results indicate that the heat capacities at different pressures all increase with temperature increasing and are close to the Dulong-Petit limit at higher temperatures, Debye temperature decreases with temperature increasing, and increases with pressure rising. The cubic-Fe 2 TiAl is stable mechanically under 250 GPa. Moreover, under lower pressure, thermal expansion coefficient rises rapidly with temperature increasing, and the increasing rate becomes slow at higher pressure.  相似文献   

11.
The elastic and thermodynamic properties of CsCl-type structure CaB6 under high pressure are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice parameters of CaB6 under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa), and its pressure derivative B′, shear modulus G, Young's modulus E, elastic Debye temperature ΘB, Zener's anisotropy parameter A, Poisson ratios σ, and Kleinmann parameter ζ are also presented. An analysis for the calculated elastic constants has been made to reveal the mechanical stability of CaB6 up to 100 GPa. The thermodynamic properties of the CsCl-type structure CaB6 are predicted using the quasi-harmonic Debye model. The pressure-volume-temperature (P-V-T) relationship, the variations of the heat capacity CV, Debye temperature ΘD, and the thermal expansion α with pressure P and temperature T, as well as the Grüneisen parameters γ are obtained systematically in the ranges of 0-100 GPa and 0-2000 K.  相似文献   

12.
In this study, the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method is employed to calculate the effect of pressure variation (0–50 GPa) on the electronic structure, elastic parameters, mechanical durability, and thermodynamic aspects of calcium based CaLiF3 in combination with the Quasi-harmonic Debye model where the phonon effects are considered. A prominent decrease in the value of the lattice constant and the bond lengths is observed with an increase in pressure. The significant influence of pressure on a wide range of elastic parameters and their related mechanical properties has been discussed in detail to utilize this material in low birefringence lens fabrication technology. The transition from brittle to ductile behavior is also observed with an increase in pressure. Moreover, a successful prediction of the important thermodynamic aspects, such as the volume expansion coefficient (α), Debye temperature (θD), and heat capacities (Cp and Cv), is also done in wide pressure and temperature ranges.  相似文献   

13.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

14.
刘显坤  郑洲  兰晓华  刘聪 《计算物理》2013,30(2):256-264
采用基于密度泛函理论的第一性原理平面波赝势方法研究ZrV2的晶体结构和弹性,利用准谐Debye模型计算在不同温度(T=0~1200 K)和不同压强(P=0~20 GPa)下ZrV2的热力学性质,包括弹性模量与压强,热熔与温度,以及热膨胀系数与温度和压力的关系.结果表明:计算的ZrV2晶格常数与实验值符合较好,晶体材料的弹性常数随着压力增加而增加;在一定温度下,相对体积、热熔随着压强的增加而减小,德拜温度、弹性模量随着压强的增加而增加,且高压下温度对ZrV2热膨胀系数的影响小于压强的影响.  相似文献   

15.
Structural, elastic and electronic properties of tetragonal HfO2 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated ground-state properties are in good agreement with previous theoretical and experimental data. Six independent elastic constants of tetragonal HfO2 have been calculated at zero pressure and high pressure. From the obtained elastic constants, the bulk, shear and Young's modulus, Poisson's coefficients, acoustic velocity and Debye temperature have been calculated at the applied pressure. Band structure shows that tetragonal HfO2 is an indirect band gap. The variation of the gap versus pressure is well fitted to a quadratic function.  相似文献   

16.
The mechanical stability,elastic,and thermodynamic properties of the anti-perovskite superconductors MNNi 3(M=Zn,Mg,Al) are investigated by means of the first-principles calculations.The calculated structural parameters and elastic properties of MNNi 3 are in good agreement with the experimental and the other theoretical results.From the elastic constants under high pressure,we predict that ZnNNi 3,MgNNi 3,and AlNNi 3 are not stable at the pressures above 61.2 GPa,113.3 GPa,and 122.4 GPa,respectively.By employing the Debye model,the thermodynamic properties,such as the heat capacity and the thermal expansion coefficient,under pressures and at finite temperatures are also obtained successfully.  相似文献   

17.
Using the first-principles full-potential linear muffin-tin orbital method within the local density approximation, we have studied the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3. It is found that this compound has an indirect band gap. The valence band maximum (VBM) is located at Γ-point, whereas the conduction band minimum (CBM) is located at X-point. The pressure and volume dependences of the energy band gaps have been calculated. The elastic constants at equilibrium are also determined. We derived the bulk and shear moduli, Young’s modulus, and Poisson’s ratio. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of the bulk modulus, heat capacities, and Debye temperature with pressure and temperature are successfully obtained.  相似文献   

18.
The main objective of our work is the study of structural, optoelectronic and thermodynamic properties of InAsxP1-x alloys in the zinc-blende structure using the full potential linearized augmented plane wave method (FP-LAPW) based on density functional theory (DFT). Different exchange correlation potentials were used, as well as the local density approximation (LDA) and the generalized gradient approximation (GGA) parameterized by Perdew–Burke–Ernzerhof (PBE-GGA) and PBE sol-GGA of Perdew, to estimate structural properties such as lattice parameters, the bulk modulus and its first pressure derivative. For electronic properties, the Tran-Blaha modified Becke–Johnson potential (TB-mBJ) was used for density of states (DOS) and band structure calculations. The results show that the compounds of interest are semiconductors with direct band gaps for the full range of x compositions and that the optical band gap decreases from 1.58 to 0.41 eV with increasing As concentrations. The obtained results show a good agreement with experimental and theoretical data found in the literature. In addition, we have investigated the dielectric function as well as the refractive index and the reflectivity. The electronic and optical properties were studied under hydrostatic pressure (P = 0, 5, 10, 15, 20, and 25 GPa), and it was found that the band gaps of the binary compounds change from a direct to an indirect harmonic Debye model was used, which takes into account the effect of pressure P and temperature T on the lattice parameter, to explore the heat capacity, the Debye temperature and the entropy under pressures ranging from 0 to 20 GPa and temperatures ranging from 0 to 1200 K.  相似文献   

19.
李晓凤  彭卫民  申筱  姬广富  赵峰 《物理学报》2009,58(4):2660-2666
采用密度泛函理论中平面波基矢,模守恒赝势结合局域密度近似以及广义梯度近似对固态Kr在高压下的结构以及弹性性质进行了研究, 通过计算发现弹性常数,Debye温度以及声速都随压力的增大而增大,所计算的弹性常数与实验和其他的理论符合的很好. 利用Debye模型得到了固态Kr的热力学性质, 熵随压力的增大而减小,随温度升高而升高;而定容热容Cv,定压热容Cp则随温度升高而升高,而且Cv在达到一定温度时趋于定值,所得的热力学性质和实验值是相符的.最后还预测了固态Kr在高压下的电子结构和光学性质, 计算结果表明随压力的增加固态Kr的前沿能带变窄,光吸收系数增大,吸收峰增宽,电子更容易发生跃迁,固态Kr有可能转化为半导体. 关键词: Kr 第一性原理 弹性常数 光学性质  相似文献   

20.
牛兴平  孙兆楼 《计算物理》2017,34(4):468-474
利用基于密度泛函理论的第一性原理平面波赝势方法结合准谐德拜模型研究NaCl结构的CaS在高压下的弹性和热力学性质.计算得到的零温零压下的晶格常数、体弹模量与实验值符合得很好.弹性常数和弹性模量随着压强的增大而增大.压强对体弹模量和热膨胀系数的影响大于温度的影响.热容随压强的升高而降低,在高温下热容接近于Dulong-Petit极限.通过求解Gibbs自由能计算得到B1结构和B2结构CaS的相变压为36.61 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号